×

On subsequence sums of a zero-sum free sequence over finite abelian groups. (English) Zbl 1469.11039

Let \(G\) be a finite abelian group. A sequence over \(G\) is a finite unorder sequence with terms from \(G\) and repetition allowed. Let \(S=g_1\cdot\ldots\cdot g_{\ell}\) be a sequence over \(G\). We define \(\Sigma(S)=\{\sum_{i\in I}g_i\colon \emptyset\neq I\subset [1,\ell]\}\) and we say \(S\) is zero-sum free if \(0\not\in \Sigma(S)\). For every \(r\in \mathbb N\), we let \[ \mathsf f_G(r)=\min\big\{|\Sigma(S)|\colon S\text{ is a zero-sum free sequence over \(G\) of length }r\big\}\,. \] Under some mild conditions, the authors proved that \(|\Sigma(S)|\ge 5|S|-16\) for all zero-sum free sequences \(S\) over \(G\) of length \(|S\ge 5\) (see Theorem 1.1). Suppose \(G\cong C_{n_1}\oplus \ldots\oplus C_{n_r}\) with \(1<n_1\mid \ldots\mid n_r\). The authors also showed that if \(n_{r-1}\ge 5\), then \(\mathsf f_G(n_r+3)\ge 5n_r-1\) (see Theorem 1.5).

MSC:

11B75 Other combinatorial number theory
11P70 Inverse problems of additive number theory, including sumsets
Full Text: DOI

References:

[1] Baayen, P. C., \( C_2 \oplus C_2 \oplus C_2 \oplus C_{2 n}!\) is true for odd n (1969), Mathematical Centre: Mathematical Centre Amsterdam, Report ZW-1969-006 · Zbl 0209.05402
[2] Bhowmik, G.; Schlage-Puchta, J.-C., Davenport’s constant for groups of the form \(\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{3 d} \), (Additive Combinatorics. Additive Combinatorics, CRM Proc. Lecture Notes, vol. 43 (2007), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 307-326 · Zbl 1173.11012
[3] Bollobás, B.; Leader, I., The number of k-sums modulo k, J. Number Theory, 78, 27-35 (1999) · Zbl 0929.11008
[4] Eggleton, R. B.; Erdös, P., Two combinatorial problems in group theory, Acta Arith., 21, 111-116 (1972) · Zbl 0248.20068
[5] Gao, W.; Geroldinger, A., Zero-sum problems in finite abelian groups: a survey, Expo. Math., 24, 337-369 (2006) · Zbl 1122.11013
[6] Gao, W.; Geroldinger, A.; Grynkiewicz, D., Inverse zero-sum problems III, Acta Arith., 141, 103-152 (2010) · Zbl 1213.11178
[7] Gao, W.; Huang, M.; Hui, W.; Li, Y.; Liu, C.; Peng, J., Sums of sets of abelian group elements, J. Number Theory, 208, 208-229 (2020) · Zbl 1464.11031
[8] Gao, W.; Leader, I., Sums and k-sums in abelian groups of order k, J. Number Theory, 120, 26-32 (2006) · Zbl 1192.11010
[9] Gao, W.; Li, Y.; Peng, J.; Sun, F., Subsums of a zero-sum free subset of an Abelian group, Electron. J. Comb., 15, R116 (2008) · Zbl 1206.11015
[10] Gao, W.; Li, Y.; Peng, J.; Sun, F., On subsequence sums of a zero-sum free sequence II, Electron. J. Comb., 15, R117 (2008) · Zbl 1207.11025
[11] Geroldinger, A.; Grynkiewicz, D. J., The large davenport constant I: groups with a cyclic, index 2 subgroup, J. Pure Appl. Algebra, 217, 863-885 (2013) · Zbl 1276.20027
[12] Geroldinger, A.; Halter-Koch, F., Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278 (2006), Chapman & Hall/CRC, 700 pp · Zbl 1113.11002
[13] Olson, J. E., A combinatorial problem on finite abelian groups I, J. Number Theory, 1, 8-10 (1969) · Zbl 0169.02003
[14] Olson, J. E., A combinatorial problem on finite abelian groups II, J. Number Theory, 2, 195-199 (1969) · Zbl 0167.28004
[15] Olson, J. E., Sums of sets of group elements, Acta Arith., 28, 147-156 (1975) · Zbl 0318.10035
[16] Olson, J. E.; White, E. T., Sums from a sequence of group elements, (Zassenhaus, H., Number Theory and Algebra (1977), Academic Press), 215-222 · Zbl 0368.05009
[17] Peng, J.; Hui, W.; Li, Y.; Sun, F., On subset sums of zero-sum free sets of abelian groups, Int. J. Number Theory, 15, 3, 705-711 (2019)
[18] Peng, J.; Li, Y.; Liu, C.; Huang, M., On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups, Colloq. Math. (2020), in press
[19] Pixton, A., Sequences with small subsums sets, J. Number Theory, 129, 806-817 (2009) · Zbl 1234.11010
[20] Qu, Y.; Xia, X.; Xue, L.; Zhong, Q., Subsequence sums of zero-sum free sequences over finite abelian groups, Colloq. Math., 140, 119-127 (2015) · Zbl 1362.11023
[21] Reiher, C., A proof of the theorem according to which every prime number possesses Property B (2010), Ph.D. thesis, Rostock
[22] Schmid, W. A., Inverse zero-sum problems II, Acta Arith., 143, 4, 333-343 (2010) · Zbl 1219.11151
[23] Sun, F., On subsequence sums of a zero-sum free sequence, Electron. J. Comb., 14, R52 (2007) · Zbl 1206.11022
[24] Sun, F.; Li, Y.; Peng, J., A note on the inverse problems associated with subsequence sums, J. Comb. Math. Comb. Comput., 111 (2019) · Zbl 1483.11040
[25] Yuan, P., Subsequence sums of a zero-sumfree sequence, Eur. J. Comb., 30, 439-446 (2009) · Zbl 1170.20033
[26] Yuan, P., Subsequence sums of zero-sum-free sequences, Electron. J. Comb., 16, R97 (2009) · Zbl 1248.11021
[27] Yuan, P.; Zeng, X., On zero-sum free subsets of length 7, Electron. J. Comb., 17, R104 (2010) · Zbl 1231.05295
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.