×

Designing and tuning MIMO feedforward controllers using iterated LMI restriction. (English) Zbl 1512.93063

Summary: In this paper, a multi-input multi-output (MIMO) feedforward control structure is proposed and designed based on the linear matrix inequality (LMI) approach to improve disturbance rejection and reference tracking of the given feedback system. The proposed architecture consists of two MIMO feedforward controllers, where each controller can be designed independently using the proposed method. The unknown variables of the feedforward controllers are calculated using LMI restrictions such that the \(\mathrm{H}_\infty\)-norm of the transfer function matrix from disturbance (set-point) to output (error) is minimized. By taking advantage of the frequency sampling techniques and using some iterative algorithms, convergence of the solution to a local optimal point is guaranteed. For solving this optimization problem the CVX optimization tool is used and the numerical results are presented. The proposed method can be considered as a new tractable approach for tuning the parameters of MIMO feedforward controllers.

MSC:

93C35 Multivariable systems, multidimensional control systems
90C22 Semidefinite programming

Software:

CVX

References:

[1] L, Minimumtime rest-to-rest feedforward action for PID feedback MIMO systems, IFAC Proc. Vol., 45, 217-222 (2012) · doi:10.3182/20120328-3-IT-3014.00037
[2] F, Experimental evaluation of feedforward tuning rules, IFAC Proc. Vol., 114, 104877 (2021) · doi:10.1016/j.conengprac.2021.104877
[3] P, Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process, ISA Trans., 63, 365-376 (2016) · doi:10.1016/j.isatra.2016.03.010
[4] Y, Flight test results of disturbance attenuation using preview feedforward compensation, IFAC-PapersOnLine, 50, 14188-14193 (2017) · doi:10.1016/j.ifacol.2017.08.2086
[5] D, Transient optimization in output regulation via feedforward selection and regulator state initialization, IFAC-PapersOnLine, 50, 2405-8963 (2017) · doi:10.1016/j.ifacol.2017.08.677
[6] W, Comparison of additive and multiplicative feedforward control, J. Process Control, 111, 1-7 (2022) · doi:10.1016/j.jprocont.2022.01.004
[7] Y, Disturbance rejection via feedforward compensation using an enhanced equivalent-input-disturbance approach, J. Franklin Inst., 357, 10977-10996 (2020) · Zbl 1450.93011 · doi:10.1016/j.jfranklin.2020.05.052
[8] J, Servo performance improvement through iterative tuning feedforward controller with disturbance compensator, Int. J. Mach. Tools Manuf., 117, 1-10 (2017) · doi:10.1016/j.ijmachtools.2017.02.002
[9] Y, Multi-input multi-output feedforward control of multi-harmonic gearbox vibrations using parallel adaptive notch filters in the principal component space, J. Sound Vib., 330, 5230-5244 (2011) · doi:10.1016/j.jsv.2011.06.008
[10] S, Active disturbance rejection control based on feedforward inverse system for turbofan engines, IFAC-PapersOnLine, 54, 376-381 (2021) · doi:10.1016/j.ifacol.2021.10.191
[11] D, Feedforward-feedback control of a solid oxide fuel cell power system, Int. J. Hydrog. Energy, 43, 6352-6363 (2018) · doi:10.1016/j.ijhydene.2018.01.203
[12] L, Industrial feedforward control technology: a review, J. Intell. Manuf., 30, 2819-2833 (2019) · doi:10.1007/s10845-018-1399-6
[13] M, A robust delay-dependent guaranteed cost PID multivariable output feedback controller design for time-varying delayed systems: An LMI optimization approach, Eur. J. Control, 61, 68-79 (2021) · Zbl 1472.93050 · doi:10.1016/j.ejcon.2021.06.003
[14] Z, Weighted sensitivity design of multivariable PID controllers via a new iterative LMI approach, J. Process Control, 110, 24-34 (2022) · doi:10.1016/j.jprocont.2021.11.016
[15] F, On the design of multivariable PID controllers via LMI approach, Automatica, 38, 517-526 (2002) · Zbl 1064.93017 · doi:10.1016/S0005-1098(01)00237-0
[16] S, MIMO PID tuning via iterated LMI restriction, Int. J. Robust Nonlinear Control, 26, 1718-1731 (2016) · Zbl 1417.93162 · doi:10.1002/rnc.3376
[17] J, LMI stability conditions for fractional order systems, Comput. Math. Appl., 59, 1594-1609 (2010) · Zbl 1189.34020 · doi:10.1016/j.camwa.2009.08.003
[18] S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, \(2^{nd}\) edition, Wiley, New York, 2005. · Zbl 0883.93001
[19] C, Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica, 46, 1730-1734 (2010) · Zbl 1204.93094 · doi:10.1016/j.automatica.2010.06.038
[20] Q, Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback, IEEE Trans. Autom. Control, 57, 1377-1390 (2011) · Zbl 1369.90170 · doi:10.1109/TAC.2011.2176154
[21] S. Tofighi, F. Bayat, F. Merrikh-Bayat, Robust feedback linearization of an isothermal continuous stirred tank reactor: \(H_∞\) mixed-sensitivity synthesis and DK-iteration approaches, Trans. Inst. Meas. Control, 39 (2017), 344-351. DOI: 10.1177/0142331215603446
[22] Research CVX, CVX: Matlab software for disciplined convex programming, 2012. Available from: http://cvxr.com/cvx (Accessed on March 2021).
[23] R, Solving semidefinite-quadratic-linear programs using SDPT3, Math. Program., 95, 189-217 (2003) · Zbl 1030.90082 · doi:10.1007/s10107-002-0347-5
[24] R, Terminal composition control of a binary distillation column, Chem. Eng. Sci., 28, 1707-1717 (1973) · doi:10.1016/0009-2509(73)80025-9
[25] M, Simple frequency tools for control system analysis, Automatica, 28, 989-996 (1992) · Zbl 0766.93020 · doi:10.1016/0005-1098(92)90152-6
[26] F, An iterative LMI approach for \(H_∞\) synthesis of multivariable PI/PD controllers for stable and unstable processes, Chem. Eng. Res. Des., 132, 606-615 (2018) · doi:10.1016/j.cherd.2018.02.012
[27] S, A benchmark system to investigate the non-minimum phase behaviour of multi-input multi-output systems, J. Control Decis. · doi:10.1080/23307706.2017.1371653
[28] H. H. Rosenbrock, Computer-Aided Control System Design, Academic Press, New York, 1974.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.