×

Prey-predator dynamics with two predator types and Michaelis-Menten predator harvesting. (English) Zbl 1508.92206

Summary: We consider the population dynamics of prey under the effect of the two types of predators. One of the predator types is harvested, modelled with a term with a Michaelis-Menten type functional form. Besides local stability analysis, we are interested that how harvesting could directly affect the dynamics of the ecosystem, such as existence and dynamics of coexistence equilibria and periodic solutions. Theoretical and numerical methods are used to study the role played by several bifurcations in the mathematical models.

MSC:

92D25 Population dynamics (general)
34D20 Stability of solutions to ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Anderson, RM; May, RM, The population dynamics of microparasites and their invertebrates hosts, Proc. R. Soc. Lond., 291, 451-463 (1981)
[2] Arditi, R.; Ginzburg, LR, Coupling in predator-prey dynamics: ratio-dependence, J. Theor. Biol., 139, 311-326 (1989)
[3] Beddington, JR, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44, 1, 331-340 (1975)
[4] Beretta, E.; Kuang, Y., Global analysis in some delayed ratio dependent predator-prey systems, Nonlinear Anal., 32, 381-408 (1998) · Zbl 0946.34061
[5] Bian, F.; Zhao, W.; Song, Y.; Yue, R., Dynamical analysis of a class of prey-predator model with Beddington-Deangelis functional response, stochastic perturbation, and impulsive toxicant input, Complexity, 2017, 3, 1-18 (2017) · Zbl 1380.93281
[6] Cantrell, RS; Cosner, C., On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 275, 206-222 (2001) · Zbl 0991.34046
[7] Chakraborty, S.; Pal, S.; Bairagi, N., Predator-prey interaction with harvesting: mathematical study with biological ramifications, J. Appl. Math. Model., 36, 4044-4059 (2012) · Zbl 1252.34038
[8] Chen, FD, On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180, 1, 33-49 (2005) · Zbl 1061.92058
[9] Chen, J.; Huang, J.; Ruan, S.; Wang, J., Bifurcations of invariant tori in predator-prey models with seasonal prey harvesting, SIAM J. Appl. Math., 73, 5, 1876-1905 (2013) · Zbl 1294.34050
[10] Clark, CW, Aggregation and fishery dynamics: a theoretical study of schooling and the purse seine tuna fisheries, Fish. Bull., 77, 2, 317-337 (1979)
[11] Cosner, C.; Angelis, DL; Ault, JS; Olson, DB, Effects of spatial grouping on functional response of predators, Theor. Popul. Biol., 56, 65-75 (1999) · Zbl 0928.92031
[12] Cressman, R., A predator-prey refuge system: evolutionary stability in ecological systems, Theor. Popul. Biol., 76, 248-257 (2009) · Zbl 1403.92238
[13] Cui, J.; Takeuchi, Y., Permanence, extinction and periodic solution of predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 317, 464-474 (2006) · Zbl 1102.34033
[14] Dai, G.; Tang, M., Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58, 1, 193-210 (1998) · Zbl 0916.34034
[15] DeAngelis, DL; Goldstein, RA; Neill, RV, A model for trophic interaction, Ecology, 56, 4, 881-892 (1975)
[16] Feller, W., On the logistic law of growth and its empirical verifcation biology, Acta Biotheor., 5, 51-66 (1940) · Zbl 0022.37402
[17] Freedman, HI, A model of predator-prey dynamics modified by the action of parasite, J. Math. Biosci., 99, 143-155 (1990) · Zbl 0698.92024
[18] Gakkhar, S.; Naji, RK, Order and chaos in a food web consisting of a predator and two independent preys, Commun. Nonlinear Sci. Numer. Simul., 10, 2, 105-120 (2005) · Zbl 1063.34038
[19] Gard, TC; Hallam, TG, Persistence in food web-1, Lotka-Volterra food chains, Bull. Math. Biol., 41, 877-891 (1979) · Zbl 0422.92017
[20] Gause, GF, The Struggle for Existence. Dover Phoenix Editions (1934), New York: Hafner, New York
[21] Ghosh, B.; Kar, TK, Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models, J. Theor. Biol., 329, 6-14 (2013) · Zbl 1330.92106
[22] Gompertz, B., On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc., 115, 513-585 (1825)
[23] Hadeler, KP; Freedman, HI, Predator-prey populations with parasitic infection, J. Math. Biol., 27, 609-631 (1989) · Zbl 0716.92021
[24] Hethcote, HW; Wang, W.; Ma, Z., A predator-prey model with infected prey, Theor. Popul. Biol., 66, 259-268 (2004)
[25] Holling, CS, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol., 91, 293-320 (1959)
[26] Holling, CS, Some characteristic of simple types of predation and parasitism, Can. Entomol., 91, 385-398 (1959)
[27] Hu, D.; Cao, H., Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., 33, 58-82 (2016) · Zbl 1352.92125
[28] Huang, J.; Gong, Y.; Ruan, S., Bifurcation analysis in a predator-prey model with constant-yield predator harvesting, Discrete Contin. Dyn. Syst. Ser. B, 18, 2101-2121 (2013) · Zbl 1417.34092
[29] Huo, HF; Li, WT; Nieto, JJ, Periodic solutions of delayed predator-prey model with the Beddington-DeAngelis functional response, Chaos Solitons Fractals, 33, 505-512 (2007) · Zbl 1155.34361
[30] Hwang, ZW, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 281, 1, 395-401 (2003) · Zbl 1033.34052
[31] Ji, L.; Wu, C., Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., 11, 4, 2285-2295 (2010) · Zbl 1203.34070
[32] Kar, TK, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math., 185, 19-33 (2006) · Zbl 1071.92041
[33] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36, 389-406 (1998) · Zbl 0895.92032
[34] Kuznetsov, YA, Elements of Applied Bifurcation Theory (2004), New York: Springer, New York · Zbl 1082.37002
[35] Leard, B.; Lewis, C.; Rebaza, J., Dynamics of ratio-dependent predator-prey models with nonconstant harvesting, Discrete Contin. Dyn. Syst. Ser., 1, 303-315 (2008) · Zbl 1151.37062
[36] Lotka, AJ, Elements of Physical Biology (1925), Baltimore: Williams and Willkins, Baltimore · JFM 51.0416.06
[37] Ma, WB; Takeuchi, Y., Stability analysis on predator-prey system with distributed delays, J. Comput. Appl. Math., 88, 79-94 (1998) · Zbl 0897.34062
[38] Makinde, OD, Solving ratio-dependent predator-prey system with constant effort harvesting using a domian decomposition method, Appl. Math. Comput., 43, 247-267 (2007)
[39] Malthus, TR, An Essay on the Principles of Populations (1798), London: St. Paul’s, London
[40] May, RM, Stability and Complexity in Model Ecosystems (1973), Princeton: Princeton University Press, Princeton · Zbl 0253.92006
[41] May, RM; Beddington, JR; Clark, CW; Holt, SJ; Laws, RM, Management of multispecies fisheries, Science, 205, 4403, 267-277 (1979)
[42] Mukhopadhyay, B.; Bhattacharyya, R., Vole population dynamics under the influence of specialist and generalist predation, Nat. Resour. Model., 26, 1, 91-110 (2013) · Zbl 07861382
[43] Myerscough, MR; Gray, BF; Hogarth, WL; Norbury, J., An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking, J. Math. Biol., 30, 4, 389-411 (1992) · Zbl 0749.92022
[44] Rebaza, J., Dynamics of prey threshold harvesting and refuge, J. Comput. Appl. Math., 236, 1743-1752 (2012) · Zbl 1235.92048
[45] Schaffer, WM, Order and chaos in ecological systems, Ecology, 66, 1, 93-106 (1985)
[46] Sen, M.; Srinivasu, PDN; Banerjee, M., Global dynamics of an additional food provided predator-prey system with constant harvest in predators, Appl. Math. Comput., 250, 193-211 (2015) · Zbl 1328.37059
[47] Song, Q.; Yang, R.; Zhang, C.; Tang, L., Bifurcation analysis in a diffusive predator-prey system with Michaelis-Menten-type predator harvesting, Adv. Differ. Equ., 2018, 329 (2018) · Zbl 1448.92250 · doi:10.1186/s13662-018-1741-5
[48] Venturino, E., Epidemics in predator-prey models: disease in prey, in mathematical population dynamics, J. Math. Appl. Med. Biol., 381, 381-393 (1995)
[49] Verhulst, PF, Notice sur la loi que la population suit dans son accoroissemnt, Corresp. Math. Phys., 10, 113-121 (1838)
[50] Volterra, V., Variazioni e fluttazioni del numero d’individui in species animali conviventi, Memoria della Reale Accademia Nazionale dei Lincei, 2, 31-113 (1926) · JFM 52.0450.06
[51] Wang, FY; Hao, CP; Chen, LS, Bifurcation and chaos in a Monod-Haldene type food chain chemostat with pulsed input and washout, Chaos Solitons Fractals, 32, 1, 181-194 (2007) · Zbl 1130.92058
[52] Wang, K., Permanence and global asymptotical stability of a predator prey model with mutual interference, Nonlinear Anal. Real World Appl., 12, 2, 1062-1071 (2011) · Zbl 1213.34067
[53] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), New York: Springer, New York · Zbl 1027.37002
[54] Xiao, D.; Jennings, LS, Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 3, 737-753 (2005) · Zbl 1094.34024
[55] Xiao, D.; Li, W.; Han, M., Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324, 14-29 (2006) · Zbl 1122.34035
[56] Xiao, D.; Ruan, S., Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43, 268-290 (2001) · Zbl 1007.34031
[57] Xiao, Y.; Chen, L., Modeling and analysis of a predator-prey model with disease in prey, Math. Biosci., 171, 59-82 (2001) · Zbl 0978.92031
[58] Zhang, X.; Zhao, H., Bifurcation and optimal harvesting of a diusive predator-prey system with delays and interval biological parameters, J. Theor. Biol., 363, 390-403 (2014) · Zbl 1317.92068
[59] Zhao, H.; Huang, X.; Zhang, X., Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Phys. A, 421, 300-315 (2015) · Zbl 1395.37060
[60] Zhao, H.; Zhang, X.; Huang, X., Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion, Appl. Math. Comput., 266, 462-480 (2015) · Zbl 1410.37089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.