×

Stagnation point flow past a stretching/shrinking sheet driven by arrhenius kinetics. (English) Zbl 1427.76059

Summary: The effect that a stagnation-point flow on a stretching/shrinking surface can have on an exothermic surface reaction is considered. The velocity of the surface relative to the outer flow is measured by the parameter \(\lambda\) with there being a critical value of \(\lambda \). The surface reaction is described by the dimensionless reaction parameters \(\alpha, \beta\) and \(\varepsilon \), representing the heat of reaction, the reaction rate constant and the activation energy. The problem to determine how the dimensionless surface temperature \(\theta_0\) and concentration \(\varphi_0\) varied can be simplified enabling \(\theta_0\) and \(\varphi_0\) to be readily calculated in terms of reaction parameters. A hysteresis bifurcation is seen to arise distinguishing between cases where there are two critical points, and hence three solution branches, and where there is only a unique solution, the calculation of which placed an upper bound on the activation energy parameter \(\varepsilon\) for multiple solutions. The effect of the moving surface is seen to have a direct result on the surface temperature \(\theta_0\) and concentration \(\varphi_0\) as well as on the locations of the critical values and the hysteresis bifurcation.

MSC:

76D10 Boundary-layer theory, separation and reattachment, higher-order effects
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Hiemenz, K., Die Grenzschicht an einem in der gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytechn. J., 326, 191, 321-324 (1911)
[2] Homann, F., Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel, Z. Angew. Math. Mech., 16, 153-164 (1936) · JFM 62.0984.02
[3] Fisher, E. G., Extrusion of Plastics (1976), Wiley: Wiley New York
[4] Yu, X.; Meng, Y.; Tian, Y.; Zhang, J.; Liang, W., Measurement of lubricant viscosity and detection of boundary slip at high shear rates, Tribol. Int., 94, 20-25 (2016)
[5] Crane, L. J., Flow past a stretching plate, Z. Angew Math. Mech., 21, 645-647 (1970)
[6] Carragher, P.; Crane, L. J., Heat transfer on a continuous stretching sheet, J. Appl. Math. Mech., 62, 564-565 (1982)
[7] Banks, W. H.H., Similarity solutions of the boundary-layer equations for a stretching wall, J. Mech. Theor. Appl., 2, 375-392 (1983) · Zbl 0538.76039
[8] Mcleod, J. B.; Rajagopal, K. R., On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary, Arch. Ration. Mech. Anal., 98, 385-393 (1987) · Zbl 0631.76021
[9] Wang, C. Y., Review of similarity stretching exact solutions of the Navier-Stokes equations, Eur. J. Mech. B/Fluids, 30, 475-479 (2011) · Zbl 1258.76061
[10] Miklavčič, M.; Wang, C. Y., Viscous flow due to a shrinking sheet, Q. Appl. Math., 64, 283-290 (2006) · Zbl 1169.76018
[11] Fang, T., Boundary layer flow over a shrinking sheet with power-law velocity, Int. J. Heat Mass Transf., 51, 5838-5843 (2008) · Zbl 1157.76010
[12] Fang, T. G.; Zhang, J.; Yao, S. S., Viscous flow over an unsteady shrinking sheet with mass transfer, Chin. Phys. Lett., 26, 014703 (2009)
[13] Goldstein, J., On backward boundary layers and flow in converging passages, J. Fluid Mech., 21, 33-45 (1965) · Zbl 0125.43303
[14] Merkin, J. H.; Chaudhary, M. A., Free convection boundary layers on vertical surfaces driven by an exothermic surface reaction, Q. J. Mech. Appl. Math., 47, 405-428 (1994) · Zbl 0812.76089
[15] Chaudhary, M. A.; Merkin, J. H., Free convection stagnation-point boundary layers driven by catalytic surface reactions: I. The steady states, J. Eng. Math., 28, 145-171 (1994) · Zbl 0801.76093
[16] Chaudhary, M. A.; Merkin, J. H., Free convection stagnation-point boundary layers driven by catalytic surface reactions: II. Times to ignition, J. Eng. Math., 30, 403-415 (1996) · Zbl 0876.76081
[17] Ikeda, H.; Libby, P. A.; Williams, F. A., Catalytic combustion of hydrogen-air mixtures in stagnation flows, Combust. Flame, 93, 138-148 (1993)
[18] Chaudhary, M. A.; Liñan, A.; Merkin, J. H., Free convection boundary layers driven by exothermic surface reactions: critical ambient temperatures, Math. Eng. Ind., 5, 129-145 (1995) · Zbl 0832.92029
[19] Puri, I. K., Extinction criteria for buoyant nonpremixed flames, Combust. Sci. Technol., 84, 305-321 (1992)
[20] Gray, B. F.; Merkin, J. H., Thermal explosion: escape times in the uniform temperature approximation. Part I: effects of parameter perturbations, J. Chem. Soc. Faraday Trans., 86, 597-601 (1990)
[21] Gray, B. F.; Merkin, J. H., Thermal explosion: escape times in the uniform temperature approximation. Part 2: perturbations of critical initial conditions, Math. Eng. Ind., 4, 13-26 (1993)
[22] Gray, B. F.; Merkin, J. H.; Wake, G. C., Disjoint bifurcation diagrams in combustion systems, Math. Comput. Model., 15, 25-33 (1991) · Zbl 0758.35083
[23] Sadiq, M. A.; Merkin, J. H., Combustion in a porous material with reactant consumption: the role of the ambient temperature, Math. Comput. Model., 20, 27-46 (1994) · Zbl 0805.34024
[24] Gray, B. F.; Wake, G. C., On the determination of critical ambient temperatures and critical initial temperatures for thermal ignition, Combust. Flame, 71, 101-104 (1988)
[25] Gray, P.; Scott, S. K., Chemical Oscillations and Instabilities (1990), Clarendon Press: Clarendon Press Oxford
[26] Scott, S. K., Chemical Chaos (1991), Clarendon Press: Clarendon Press Oxford
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.