×

Entropy, Shannon orbit equivalence, and sparse connectivity. (English) Zbl 1478.37004

Summary: We say that two free p.m.p. actions of countable groups are Shannon orbit equivalent if there is an orbit equivalence between them whose associated cocycle partitions have finite Shannon entropy. We show that if the acting groups are sofic and each has a w-normal amenable subgroup which is neither locally finite nor virtually cyclic then Shannon orbit equivalence implies that the actions have the same maximum sofic entropy. This extends a result of Austin beyond the finitely generated amenable setting and has the consequence that two Bernoulli actions of a group with the properties in question are Shannon orbit equivalent if and only if they are measure conjugate. Our arguments apply more generally to actions satisfying a sparse connectivity condition which we call property SC, and yield an entropy inequality under the assumption that one of the actions has this property.

MSC:

37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)

References:

[1] Abért, M.; Weiss, B., Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems, 33, 323-333 (2013) · Zbl 1268.37006 · doi:10.1017/S0143385711000988
[2] Austin, T., Behaviour of entropy under bounded and integrable orbit equivalence, Geom. Funct. Anal., 26, 1483-1525 (2016) · Zbl 1370.37007 · doi:10.1007/s00039-016-0392-5
[3] Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T). New Mathematical Monographs, 11. Cambridge University Press, Cambridge (2008)
[4] Belinskaya, RM, Partitions of Lebesgue space in trajectories defined by ergodic automorphisms, Functional Anal. Appl., 2, 190-199 (1968) · doi:10.1007/BF01076120
[5] Bezuglyi, SI; Golodets, V. Ya, Hyperfinite and \(II_1\) actions for nonamenable groups, J. Funct. Anal., 40, 30-44 (1981) · Zbl 0496.22011 · doi:10.1016/0022-1236(81)90070-7
[6] Bowen, L., Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., 23, 217-245 (2010) · Zbl 1201.37005 · doi:10.1090/S0894-0347-09-00637-7
[7] Bowen, L., Orbit equivalence, coinduced actions and free products, Groups Geom. Dyn., 5, 1-15 (2011) · Zbl 1257.37004 · doi:10.4171/GGD/114
[8] Bowen, L., Stable orbit equivalence of Bernoulli shifts over free groups, Groups Geom. Dyn., 5, 17-38 (2011) · Zbl 1259.37002 · doi:10.4171/GGD/115
[9] Bowen, L.: Every countably infinite group is almost Ornstein. In: Dynamical Systems and Group Actions, 67-78, Contemp. Math., 567, Amer. Math. Soc., Providence, RI (2012) · Zbl 1277.37016
[10] Bowen, L., Sofic entropy and amenable groups, Ergodic Theory Dynam. Syst., 32, 427-466 (2012) · Zbl 1257.37007 · doi:10.1017/S0143385711000253
[11] de Santiago, R., Hayes, B., Hoff, D. J., Sinclair, T.: Maximal rigid subalgebras of deformations and \(L^2\)-cohomology. To appear in Anal. PDE · Zbl 1491.46068
[12] Epstein, I.: Some Results on Orbit Inequivalent Actions of Non-amenable Groups. Ph.D. thesis, University of California, Los Angeles, 55p (2008)
[13] Fieldsteel, A.; Friedman, NA, Restricted orbit changes of ergodic \(\mathbf{Z}^d\)-actions to achieve mixing and completely positive entropy, Ergodic Theory Dynam. Systems, 6, 505-528 (1986) · Zbl 0614.28016 · doi:10.1017/S0143385700003667
[14] Furman, A., Orbit equivalence rigidity., Ann. Math., 150, 1083-1108 (1999) · Zbl 0943.22012 · doi:10.2307/121063
[15] Gaboriau, D., Coût des relations d’équivalence et des groupes, Invent. Math., 139, 41-98 (2000) · Zbl 0939.28012 · doi:10.1007/s002229900019
[16] Gaboriau, D.; Popa, S., An uncountable family of nonorbit equivalent actions of \(\mathbb{F}_n\), J. Amer. Math. Soc., 18, 547-559 (2005) · Zbl 1155.37302 · doi:10.1090/S0894-0347-05-00480-7
[17] Hayes, B., Fuglede-Kadison determinant and sofic entropy, Geom. Funct. Anal., 26, 520-606 (2016) · Zbl 1377.22005 · doi:10.1007/s00039-016-0370-y
[18] Hjorth, G., A converse to Dye’s theorem, Trans. Amer. Math. Soc., 357, 3083-3103 (2005) · Zbl 1068.03035 · doi:10.1090/S0002-9947-04-03672-4
[19] Ioana, A.: Orbit inequivalent actions for groups containing a copy of \(\mathbb{F}_2\). Invent. Math. 185, 55-73 (2011) · Zbl 1230.37010
[20] Kechris, A.S: Global Aspects of Ergodic Group Actions. Mathematical Surveys and Monographs, 160. American Mathematical Society, Providence, RI (2010) · Zbl 1189.37001
[21] Kechris, A.S., Miller, B.D.: Topics in Orbit Equivalence. Lecture Notes in Mathematics, vol. 1852. Springer-Verlag, Berlin (2004) · Zbl 1058.37003
[22] Kechris, AS; Solecki, S.; Todorcevic, S., Borel chromatic numbers, Adv. Math., 141, 1-44 (1999) · Zbl 0918.05052 · doi:10.1006/aima.1998.1771
[23] Kerr, D.; Li, H., Bernoulli actions and infinite entropy, Groups Geom. Dyn., 5, 663-672 (2011) · Zbl 1246.37015 · doi:10.4171/GGD/142
[24] Kerr, D.; Li, H., Soficity, amenability, and dynamical entropy, Amer. J. Math., 135, 721-761 (2013) · Zbl 1282.37011 · doi:10.1353/ajm.2013.0024
[25] Kerr, D., Li, H.: Ergodic Theory: Independence and Dichotomies. Springer, Cham (2016) · Zbl 1396.37001
[26] Kida, Y., Orbit equivalence rigidity for ergodic actions of the mapping class group, Geom. Dedicata, 131, 99-109 (2008) · Zbl 1194.37012 · doi:10.1007/s10711-007-9219-8
[27] Lück, W.: \(L^2\)-Invariants: Theory and Applications to Geometry and \(K\)-Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 44. Springer-Verlag, Berlin (2002) · Zbl 1009.55001
[28] Mann, A.: How Groups Grow. London Mathematical Society Lecture Note Series, 395. Cambridge University Press, Cambridge (2012) · Zbl 1253.20032
[29] Monod, N.; Shalom, Y., Orbit equivalence rigidity and bounded cohomology, Ann. Math., 164, 825-878 (2006) · Zbl 1129.37003 · doi:10.4007/annals.2006.164.825
[30] Ornstein, DS; Weiss, B., Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math., 48, 1-141 (1987) · Zbl 0637.28015 · doi:10.1007/BF02790325
[31] Peterson, J.; Sinclair, T., On cocycle superrigidity for Gaussian actions, Ergodic Theory Dynam. Syst., 32, 249-272 (2012) · Zbl 1243.22005 · doi:10.1017/S0143385710000751
[32] Popa, S., Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups, Invent. Math., 170, 243-295 (2007) · Zbl 1131.46040 · doi:10.1007/s00222-007-0063-0
[33] Popa, S., On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc., 21, 981-1000 (2008) · Zbl 1222.46048 · doi:10.1090/S0894-0347-07-00578-4
[34] Seward, B.: Bernoulli shifts with bases of equal entropy are isomorphic. arXiv:1805.08279 · Zbl 1437.37015
[35] Stepin, AM, Bernoulli shifts on groups, Dokl. Akad. Nauk SSSR, 223, 300-302 (1975) · Zbl 0326.28026
[36] Tucker-Drob, R., Invariant means and the structure of inner amenable groups, Duke Math. J., 169, 2571-2628 (2020) · Zbl 1458.37043 · doi:10.1215/00127094-2019-0070
[37] Vershik, A.M.: Approximation in Measure Theory. Ph.D. thesis, Leningrad University, 1973. In Russian
[38] Vershik, AM, Theory of decreasing sequences of measurable partitions, St. Petersburg Math. J., 6, 705-761 (1995) · Zbl 0853.28009
[39] Zimmer, RJ, Strong rigidity for ergodic actions of semisimple Lie groups, Ann. Math., 112, 511-529 (1980) · Zbl 0468.22011 · doi:10.2307/1971090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.