×

Orbit equivalence rigidity for ergodic actions of the mapping class group. (English) Zbl 1194.37012

Given an ergodic standard action \(\alpha\) of a discrete group, a is orbit equivalent super-rigid if: for any other ergodic standard action \(\beta\) of a discrete group which is weakly orbit equivalent to \(\alpha\), \(\alpha\) and \(\beta\) are virtually conjugate in a certain sense which is defined. In this paper, the author establishes orbit equivalence super-rigidity for certain ergodic, free measure preserving actions on a standard Borel probability space with a finite positive measure. This continues the work of A. Furman [Ann. Math. 150, 1083–1108 (1999; Zbl 0943.22012)] (based on work by R. J. Zimmer [Ergodic theory and semi-simple groups, Monogr. Math. 81, Birkhäuser Verlag, Basel (1984; Zbl 0571.58015)]), who showed orbit equivalent super-rigidity for some ergodic standard actions of a lattice in a simple Lie group of higher real rank.

MSC:

37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
20F38 Other groups related to topology or analysis
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory
37A15 General groups of measure-preserving transformations and dynamical systems

References:

[1] Connes A., Feldman J. and Weiss B. (1982). An amenable equivalence relation is generated by a single transformation. Ergodic Theory Dynam. Systems 1(1981): 431–450 · Zbl 0491.28018
[2] Dye H.A. (1959). On groups of measure preserving transformation. I. Am. J. Math. 81: 119–159 · Zbl 0087.11501 · doi:10.2307/2372852
[3] Dye H.A. (1963). On groups of measure preserving transformations. II. Am. J. Math. 85: 551–576 · Zbl 0191.42803 · doi:10.2307/2373108
[4] Feldman J. and Moore C.C. (1977). Ergodic equivalence relations, cohomology and von Neumann algebras. I. Trans. Am. Math. Soc. 234: 289–324 · Zbl 0369.22009 · doi:10.1090/S0002-9947-1977-0578656-4
[5] Furman A. (1999). Gromov’s measure equivalence and rigidity of higher rank lattices. Ann. Math. 150(2): 1059–1081 · Zbl 0943.22013 · doi:10.2307/121062
[6] Furman A. (1999). Orbit equivalence rigidity. Ann. Math. 150(2): 1083–1108 · Zbl 0943.22012 · doi:10.2307/121063
[7] Gaboriau D. (2002). Invariants 2 de relations d’équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95: 93–150 · Zbl 1022.37002 · doi:10.1007/s102400200002
[8] Gromov M. (1991). Kähler hyperbolicity and L 2-Hodge theory. J. Differential Geom. 33: 263–292 · Zbl 0719.53042
[9] Hamenstädt, U.: Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. preprint, math.GR/0507097 (to appear) · Zbl 1139.22006
[10] Ivanov, N.V.: Subgroups of Teichmüller modular groups. Transl. of Math. Monogr., vol. 115. Am. Math. Soc., Providence, RI (1992) · Zbl 0776.57001
[11] Ivanov N.V. (1997). Automorphism of complexes of curves and of Teichmüller spaces. Internat. Math. Res. Notices 14: 651–666 · Zbl 0890.57018 · doi:10.1155/S1073792897000433
[12] Kida, Y.: The mapping class group from the viewpoint of measure equivalence theory. Mem. Am. Math. Soc. Preprint, math.GR/0512230 (to appear) · Zbl 1277.37008
[13] Kida, Y.: Measure equivalence rigidity of the mapping class group. Ann. Math. Preprint, math.GR/0607600 (to appear) · Zbl 1277.37005
[14] Kida, Y.: Classification of certain generalized Bernoulli actions of mapping class groups. Preprint
[15] Kida, Y.: Outer automorphism groups of equivalence relations for mapping class group actions, Preprint. · Zbl 1204.37005
[16] Luo F. (2000). Automorphisms of the complex of curves. Topology 39: 283–298 · Zbl 0951.32012 · doi:10.1016/S0040-9383(99)00008-7
[17] McMullen C.T. (2000). The moduli space of Riemann surfaces is Kähler hyperbolic. Ann. Math. 151(2): 327–357 · Zbl 0988.32012 · doi:10.2307/121120
[18] Monod N. and Shalom Y. (2006). Orbit equivalence rigidity and bounded cohomology. Ann. of Math. 164(2): 825–878 · Zbl 1129.37003 · doi:10.4007/annals.2006.164.825
[19] Ornstein D.S. and Weiss B. (1980). Ergodic theory of amenable group actions. I. The Rohlin lemma. Bull. Amer. Math. Soc. (N.S.) 2: 161–164 · Zbl 0427.28018 · doi:10.1090/S0273-0979-1980-14702-3
[20] Popa S. (2006). Strong rigidity of II 1 factors arising from malleable actions of w-rigid groups, II. Invent. Math. 165: 409–451 · Zbl 1120.46044 · doi:10.1007/s00222-006-0502-3
[21] Popa, S.: Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups. Invent. Math. Preprint, math.GR/0512646 (to appear) · Zbl 1131.46040
[22] Vaes, S.: Rigidity results for Bernoulli actions and their von Neumann algebras (after Sorin Popa). Séminaire Bourbaki, exposé 961, Astérisque. Preprint, math.OA/0603434 (to appear)
[23] Zimmer, R.J.: Ergodic theory and semisimple groups, Monogr. Math., vol. 81. Birkhäuser Verlag, Basel (1984) · Zbl 0571.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.