×

A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory. (English) Zbl 1117.20032

The classical Hurewicz theorem for topological dimension states that if \(f\colon X\to Y\) is a continuous map where \(X\) and \(Y\) are compact metric spaces and if for every \(y\in Y\) the topological dimension of the preimage \(f^{-1}(y)\) does not exceed some fixed integer \(n\), then \(\dim X\leq\dim Y+n\).
In this paper, the asymptotic analogue of the theorem is proven: Let \(f\colon X\to Y\) be a Lipschitz map of a geodesic metric space \(X\) to a metric space \(Y\). Suppose that for every \(R>0\) the asymptotic dimension of preimages \(f^{-1}(B_r(y))\) of \(R\)-balls in \(Y\) satisfies the inequality \(\text{asdim}\leq n\) uniformly. Then \(\text{asdim\,}X\leq\text{asdim\,}Y+n\). – For the proof of the theorem the authors construct for arbitrary \(\varepsilon>0\) a uniformly cobounded \(\varepsilon\)-Lipschitz map \(\phi\colon X\to Y\) to a uniform simplicial complex of dimension \(\leq\text{asdim\,}X+n\).
The theorem has a number of applications to geometric group theory. In particular, it allows estimating the asymptotic dimension of a finitely generated group acting by isometries on a metric space, of amalgamated products of groups, etc. Also, there are estimations \(\text{asdim\,}G\leq h(G)\) for the asymptotic dimension of a finitely generated polycyclic or nilpotent group or nilpotent Lie group \(G\) in terms of its Hirsch length \(h(G)\).

MSC:

20F69 Asymptotic properties of groups
20F65 Geometric group theory
57M07 Topological methods in group theory
55M10 Dimension theory in algebraic topology
20E08 Groups acting on trees
20E06 Free products of groups, free products with amalgamation, Higman-Neumann-Neumann extensions, and generalizations
20F16 Solvable groups, supersolvable groups

References:

[1] Gregory C. Bell, Asymptotic properties of groups acting on complexes, Proc. Amer. Math. Soc. 133 (2005), no. 2, 387 – 396. · Zbl 1133.20030
[2] G. Bell and A. Dranishnikov, On asymptotic dimension of groups, Algebr. Geom. Topol. 1 (2001), 57 – 71. · Zbl 1008.20039 · doi:10.2140/agt.2001.1.57
[3] G. Bell and A. Dranishnikov, On asymptotic dimension of groups acting on trees, Geom. Dedicata 103 (2004), 89 – 101. · Zbl 1131.20032 · doi:10.1023/B:GEOM.0000013843.53884.77
[4] G. Bell, A. Dranishnikov, and J. Keesling, On a formula for the asymptotic dimension of free products, Submitted, 2004. · Zbl 1068.20044
[5] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. · Zbl 0988.53001
[6] Gunnar Carlsson and Boris Goldfarb, On homological coherence of discrete groups, J. Algebra 276 (2004), no. 2, 502 – 514. · Zbl 1057.22013 · doi:10.1016/j.jalgebra.2004.02.006
[7] A. N. Dranishnikov, Asymptotic topology, Uspekhi Mat. Nauk 55 (2000), no. 6(336), 71 – 116 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 6, 1085 – 1129. · Zbl 1028.54032 · doi:10.1070/rm2000v055n06ABEH000334
[8] A. Dranishnikov, On asymptotic inductive dimension, JP J. Geom. Topol. 1 (2001), no. 3, 239 – 247. · Zbl 1059.54024
[9] A. Dranishnikov and T. Januszkiewicz, Every Coxeter group acts amenably on a compact space, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), 1999, pp. 135 – 141. · Zbl 0973.20029
[10] A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), no. 2-3, 203 – 225. · Zbl 1063.54027 · doi:10.1016/j.topol.2003.07.009
[11] Ryszard Engelking, Theory of dimensions finite and infinite, Sigma Series in Pure Mathematics, vol. 10, Heldermann Verlag, Lemgo, 1995. · Zbl 0872.54002
[12] M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1 – 295. · Zbl 0841.20039
[13] L. Ji, Asymptotic dimension of arithmetic groups., preprint (2003).
[14] John Roe, Lectures on coarse geometry, University Lecture Series, vol. 31, American Mathematical Society, Providence, RI, 2003. · Zbl 1042.53027
[15] Guoliang Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. of Math. (2) 147 (1998), no. 2, 325 – 355. · Zbl 0911.19001 · doi:10.2307/121011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.