×

Extending properties to relatively hyperbolic groups. (English) Zbl 1446.19005

Let \(G\) be a finitely generated group that is relatively hyperbolic with respect to subgroups \(H_1,\ldots,H_n\). Given a property of metric spaces that is invariant under coarse invariance, the authors study the question when this property extends from the subgroups \(H_i\) to the whole group \(G\).
They show that every property that satisfies certain permanence properties and is satisfied by all spaces with finite asymptotic dimension is extendable in the above sense. These permanence properties are coarse inheritance, the finite union theorem, the union theorem and the transitive fibering theorem. In particular, the result applies to finite asymptotic dimension, coarse embeddability, exactness, finite decomposition complexity and straight finite decomposition complexity.
For some of these notion, extendability to relatively hyperbolic groups was known before, for example see [M. Dardalat and E. Guentner, J. Reine Angew. Math. 612, 1–15 (2007; Zbl 1146.46047)]. For more information on permanence properties of metric spaces see [E. Guentner et al., Recent progress in general topology III. Amsterdam: Atlantis Press. 507–533 (2014; Zbl 1300.54003)].

MSC:

19D50 Computations of higher \(K\)-theory of rings
20F67 Hyperbolic groups and nonpositively curved groups
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
20F69 Asymptotic properties of groups

References:

[1] B. H. Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012), no. 3, art. ID 1250016. · Zbl 1259.20052 · doi:10.1142/S0218196712500166
[2] G. Carlsson and B. Goldfarb, Algebraic \(K\)-theory of geometric groups, preprint, arXiv:1305.3349v3 [math.AT]. · Zbl 1278.19002
[3] M. Dadarlat and E. Guentner, Uniform embeddability of relatively hyperbolic groups, J. Reine Angew. Math. 612 (2007), 1-15. · Zbl 1146.46047 · doi:10.1515/CRELLE.2007.081
[4] A. Dranishnikov and M. Zarichnyi, Universal spaces for asymptotic dimension, Topology Appl. 140 (2004), nos. 2-3, 203-225. · Zbl 1063.54027 · doi:10.1016/j.topol.2003.07.009
[5] A. Dranishnikov and M. Zarichnyi, Asymptotic dimension, decomposition complexity, and Haver’s property C, Topology Appl. 169 (2014), 99-107. · Zbl 1297.54064 · doi:10.1016/j.topol.2014.02.035
[6] J. Dydak and Z. Virk, Preserving coarse properties, Rev. Mat. Complut. 29 (2016), no. 1, 191-206. · Zbl 1348.54029 · doi:10.1007/s13163-015-0182-x
[7] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810-840. · Zbl 0985.20027 · doi:10.1007/s000390050075
[8] T. Fukaya and S. Oguni, The coarse Baum-Connes conjecture for relatively hyperbolic groups, J. Topol. Anal. 4 (2012), no. 1, 99-113. · Zbl 1251.58008 · doi:10.1142/S1793525312500021
[9] B. Goldfarb, Weak coherence of groups and finite decomposition complexity, to appear in Int. Math. Res. Not. IMRN, preprint, arXiv:1307.5345v2 [math.GT].
[10] M. Gromov, “Hyperbolic groups” in Essays in Group Theory, Math. Sci. Res. Inst. Publ. 8, Springer, New York, 1987, 75-263. · Zbl 0634.20015
[11] E. Guentner, “Permanence in coarse geometry” in Recent Progress in General Topology, III, Atlantis Press, Paris, 2014, 507-533. · Zbl 1300.54003
[12] E. Guentner, R. Tessera, and G. Yu, A notion of geometric complexity and its application to topological rigidity, Invent. Math. 189 (2012), no. 2, 315-357. · Zbl 1257.57028 · doi:10.1007/s00222-011-0366-z
[13] E. Guentner, R. Tessera, and G. Yu, Discrete groups with finite decomposition complexity, Groups Geom. Dyn. 7 (2013), no. 2, 377-402. · Zbl 1272.52041 · doi:10.4171/GGD/186
[14] R. Ji and B. Ramsey, The isocohomological property, higher Dehn functions, and relatively hyperbolic groups, Adv. Math. 222 (2009), no. 1, 255-280. · Zbl 1233.20038 · doi:10.1016/j.aim.2009.04.001
[15] D. Kasprowski, On the \(K\)-theory of groups with finite decomposition complexity, Proc. Lond. Math. Soc. (3) 110 (2015), no. 3, 565-592. · Zbl 1349.19001
[16] I. Mineyev and A. Yaman, Relative hyperbolicity and bounded cohomology, preprint, http://www.math.uiuc.edu/ mineyev/math/art/rel-hyp.pdf (accessed 7 January 2019).
[17] D. Osin, Asymptotic dimension of relatively hyperbolic groups, Int. Math. Res. Not. IMRN 2005, no. 35, 2143-2161. · Zbl 1089.20028 · doi:10.1155/IMRN.2005.2143
[18] D. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843. · Zbl 1093.20025
[19] N. Ozawa, Boundary amenability of relatively hyperbolic groups, Topology Appl. 153 (2006), no. 14, 2624-2630. · Zbl 1109.20037 · doi:10.1016/j.topol.2005.11.001
[20] D. A. Ramras, R. Tessera, and G. Yu, Finite decomposition complexity and the integral Novikov conjecture for higher algebraic \(K\)-theory, J. Reine Angew. Math. 694 (2014), 129-178. · Zbl 1306.18005
[21] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser. 31, Amer. Math. Soc., Providence, 2003. · Zbl 1042.53027
[22] A. Sisto, “Finite decomposition complexity (is preserved by relative hyperbolicity),” Alessandro Sisto’s Math Blog (blog), October 3, 2012, http://alexsisto.wordpress.com/2012/10/03/.
[23] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math. 139 (2000), no. 1, 201-240. · Zbl 0956.19004 · doi:10.1007/s002229900032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.