×

Asymptotic dimension, decomposition complexity, and Haver’s property C. (English) Zbl 1297.54064

Decomposition complexity was introduced by E. Guentner et al. [Invent. Math. 189, No. 2, 315–357 (2012; Zbl 1257.57028)] using a game theoretic approach. It was shown that the finite decomposition complexity (FDC) implies property A. In this interesting paper the authors give the notions of straight Finite Decomposition Property (sFDC) (Definition 2.2), asymptotic property C (Definition 2.4), game theoretical asymptotic property C (Definition 4.1), and game theoretical property C (Definition 5.2). In Sections 2,3, and 4 they prove that:
(1) Asymptotic property C \(\Rightarrow\) sFDS
(2) Every discrete metric sFDC space can be isometrically embedded into a geodesic metric sFDC space.
(3) sFDS \(\Rightarrow\) property A (for metric spaces)
(4) Let \(Z\) be a metric space such that \(Z=X\cup Y\), where \(X\) and \(Y\) satisfy sFDC. Then \(Z\) also satisfies sFDC.
(5) A space \(X\) has the game theoretical asymptotic property C if and only if \({\text{ asdim}} X=0\).
In Section 5 of the paper the authors compare a game-theoretic approach with the standard in the classical dimension theory. They prove that:
(6) A compact metric space \(X\) has the game theoretical property C if and only if it is countable dimensional.
Editorial remark: In [Topology Appl. 227, 102–110 (2017; Zbl 1372.54026)], the authors fill a gap in the proof of Implication (3).

MSC:

54F45 Dimension theory in general topology
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[2] Bartels, Arthur C., Squeezing and higher algebraic \(K\)-theory, K-Theory, 28, 1, 19-37 (2003) · Zbl 1036.19002
[3] Chang, Stanley S.; Ferry, Steven; Yu, Guoliang, Bounded rigidity of manifolds and asymptotic dimension growth, J. K-Theory, 1, 1, 129-144 (2008) · Zbl 1202.53048
[4] Carlsson, Gunnar; Goldfarb, Boris, On homological coherence of discrete groups, J. Algebra, 276, 2, 502-514 (2004) · Zbl 1057.22013
[5] Dranishnikov, A. N., Asymptotic topology, Russ. Math. Surv., 55, 6, 1085-1129 (2000) · Zbl 1028.54032
[6] Dranishnikov, A. N., On hypersphericity of manifolds with finite asymptotic dimension, Trans. Am. Math. Soc., 355, 1, 155-167 (2003) · Zbl 1020.53025
[7] Dranishnikov, A. N., Groups with a polynomial dimension growth, Geom. Dedic., 119, 1-15 (2006) · Zbl 1113.20036
[8] Dranishnikov, A.; Ferry, S.; Weinberger, S., An etale approach to the Novikov conjecture, Commun. Pure Appl. Math., 61, 2, 139-155 (2008) · Zbl 1137.57027
[9] Dranishnikov, A.; Sapir, M., On the dimension growth of groups, J. Algebra, 347, 1, 23-39 (2011) · Zbl 1277.20051
[10] Dranishnikov, A.; Sapir, M., Corrigendum to “On the dimension growth of groups” [J. Algebra 347 (1) (2011) 23-39], J. Algebra, 370, 407-409 (2012) · Zbl 1279.20053
[11] Engelking, R., Theory of Dimension Finite and Infinite (1995), Heldermann Verlag · Zbl 0872.54002
[12] Gromov, M., Asymptotic invariants of infinite groups, (Geometric Group Theory, vol. 2 (1993), Cambridge University Press) · Zbl 0888.53047
[13] Gromov, M., Random walk in random groups, Geom. Funct. Anal., 13, 1, 73-146 (2003) · Zbl 1122.20021
[14] Guentner, E.; Tessera, R.; Yu, G., A notion of geometric complexity and its applications to topological rigidity, Invent. Math., 189, 2, 315-357 (2012) · Zbl 1257.57028
[15] Haver, W. E., A covering property for metric spaces, (Lect. Notes Math., vol. 375 (1974), Springer-Verlag: Springer-Verlag New York), 108-113 · Zbl 0287.54028
[16] Higson, N.; Roe, J., Amenable group actions and the Novikov conjecture, J. Reine Angew. Math., 519, 143-153 (2000) · Zbl 0964.55015
[17] Nowak, P.; Yu, G., Large Scale Geometry (2012), EMS Publishing House · Zbl 1264.53051
[18] Ozawa, Narutaka, Metric spaces with subexponential asymptotic dimension growth, Int. J. Algebra Comput., 22, 2, 1250011 (2012), 3 pp · Zbl 1238.54015
[19] Radul, Taras, On transitive extension of asymptotic dimension, Topol. Appl., 157, 14, 2292-2296 (2010) · Zbl 1198.54064
[20] Roe, John, Lectures on Coarse Geometry, Univ. Lect. Ser., vol. 31 (2003), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1042.53027
[21] Sapir, Mark, Aspherical groups and manifolds with extreme properties (2011), preprint · Zbl 1231.20028
[22] Wu, Yan; Chen, Xiaoman, On finite decomposition complexity of Thompson group, J. Funct. Anal., 261, 981-998 (2011) · Zbl 1220.20041
[23] Yu, Guolyang, The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), 147, 2, 325-355 (1998) · Zbl 0911.19001
[24] Yu, Guolyang, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., 139, 1, 201-240 (2000) · Zbl 0956.19004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.