×

Topological rigidity of higher graph manifolds. (English) Zbl 1371.53040

The Borel conjecture considered in this paper states that a homotopy equivalence between two compact aspherical manifolds is homotopic to a homeomorphism. The authors prove the Borel conjecture for a family of aspherical manifolds that includes generalized graph manifolds of R. Frigerio, J.-F. Lafont and A. Sisto [“Rigidity of high dimensional graph manifolds”, Preprint, arXiv:1107.2019], cusp-decomposable manifolds studied by T. T. N. Phan [Comment. Math. Helv. 87, No. 4, 789–804 (2012; Zbl 1269.53042)] and higher graph manifolds studied by C. Connel and P. Suárez-Serrato [“On higher graph manifolds”, Preprint, arXiv:1208.4876].

MSC:

53C24 Rigidity results
20F65 Geometric group theory
19D35 Negative \(K\)-theory, NK and Nil

Citations:

Zbl 1269.53042

References:

[1] Aravinda, C.S., Farrell, T.: Twisted doubles and nonpositive curvature. Bull. Lond. Math. Soc. 41, 1053-1059 (2009) · Zbl 1185.53035 · doi:10.1112/blms/bdp085
[2] Bartels, A., Farrell, F.T., Lück, W.: The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. J AMS 27(2), 339-388 (2014) · Zbl 1307.18012
[3] Bell, G., Dranishnikov, A.: Asymptotic dimension. Topol. Appl. 155(12), 1265-1296 (2008) · Zbl 1149.54017 · doi:10.1016/j.topol.2008.02.011
[4] Capell, S.: Splitting theorems for manifolds. Invent. Math. 33(2), 69-170 (1976) · Zbl 0348.57017 · doi:10.1007/BF01402340
[5] Carlsson, G., Goldfarb, B.: The integral Novikov Conjecture for groups with finite asymptotic dimension. Invent. Math. 157, 405-418 (2004) · Zbl 1071.19003 · doi:10.1007/s00222-003-0356-x
[6] Carlsson, G., Goldfarb, B.: On homological coherence of discrete groups. J. Algebra 276(2), 502-514 (2004) · Zbl 1057.22013 · doi:10.1016/j.jalgebra.2004.02.006
[7] Carlsson, G., Goldfarb, B.: Algebraic K-Theory of Geometric Groups. arXiv:1305.3349 · Zbl 1278.19002
[8] Carlsson, G., Goldfarb, B.: Equivariant stable homotopy methods in the algebraic K-Theory of Infinite Groups (2014). arXiv:1412.3483 · Zbl 1269.53042
[9] Connell, C., Suárez-Serrato, P.: On higher graph manifolds. arXiv:1208.4876 · Zbl 1462.53032
[10] Dranishnikov, A., Zarichnyi, M.: Asymptotic dimension, decomposition complexity, and Haver’s property C. Topol. Appl. 169, 99-107 (2014) · Zbl 1297.54064 · doi:10.1016/j.topol.2014.02.035
[11] Frigerio, R., Lafont, J.F., Sisto, A.: Rigidity of high dimensional graph manifolds, Astérisque, (2016) (to appear) · Zbl 1333.53001
[12] Goldfarb, B.: Weak coherence and the K-Theory of groups with finite decomposition complexity. IMRN (2016) (to appear). arXiv:1307.5345 · Zbl 1297.54064
[13] Guentner, E., Tessera, R., Yu, G.: Discrete groups with finite decomposition complexity. Groups Geom. Dyn. 7(2), 377-402 (2013) · Zbl 1272.52041 · doi:10.4171/GGD/186
[14] Phan, T.T.N.: Smooth (non)rigidity of cusp-decomposable manifolds. Comment. Math. Helv. 87(4), 780-804 (2012) · Zbl 1269.53042
[15] Waldhausen, F.: Algebraic K-Theory of generalized free products I, II, III, IV. Ann. Math 108(2), 135-256 (1978) · Zbl 0407.18009
[16] Whitehead, J.H.C.: On the asphericity of regions in a 3-sphere. Fund. Math. 32, 149-166 (1939) · Zbl 0021.16203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.