×

Multistep generalized transformation method applied to solving equations of discrete and continuous time-fractional enzyme kinetics. (English) Zbl 1466.92070

Summary: In this paper, Caputo based Michaelis-Menten kinetic model based on time scale calculus (TSC) is proposed. The main reason for its consideration is a study of tumor cells population growth dynamics. In the particular case discrete-continuous time kinetics, Michaelis-Menten model is numerically treated, using a new algorithm proposed by authors, called multistep generalized difference transformation method (MSGDETM). In addition numerical simulations are performed and is shown that it represents the upgrade of the multi-step variant of generalized differential transformation method (MSGDTM). A possible conditions for its further development are discussed and possible experimental verification is described.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
26A33 Fractional derivatives and integrals
26E70 Real analysis on time scales or measure chains

References:

[1] Voit, E., Biochemical systems theory: a review, Isrn Biomath, 897658, 53 (2013) · Zbl 1268.92045
[2] Keener, J.; Sneyd, J., Mathematical physiology I: cellular physiology (2009), Springer Science+Business Media: Springer Science+Business Media LLC, NeW York · Zbl 1273.92017
[3] Magin, R., Fractional calculus in bioengineering (2006), Begell House: Begell House Redding, Calif, USA
[4] Xia, Y.; Han, M., Multiple periodic solutions of a ratio-dependent predator prey model, Chaos Solitons Fract, 39, 1100-1108 (2009) · Zbl 1197.34065
[5] Yang, J.; Zhao, L., Bifurcation analysis and chaos control of the modified chua’s circuit system, Chaos Solitons Fract, 77, 332-339 (2015) · Zbl 1353.34089
[6] Bohner, M.; Peterson, A., Dynamic equations on time scales (2001), Birkhäuser: Birkhäuser Boston · Zbl 1021.34005
[7] (Bohner, M.; Peterson, A., Advances in Dynamic Equations on Time Scales (2003), Birkhäuser: Birkhäuser Boston) · Zbl 1025.34001
[8] Atici, F. M.; Şengül, S., Modeling with fractional difference equations, J Math Anal Appl, 369, 1, 1-9 (2010) · Zbl 1204.39004
[9] Savageau, M. A., Michaelis-Menten mechanism reconsidered: implications of fractal kinetics, J Theor Biol, 176, 1, 115-124 (1995)
[10] Schnell, S.; Mendoza, C., Closed form solution for time-dependent enzyme kinetics, J Theor Biol, 187, 2, 207-212 (1997)
[11] Meena, A.; Eswari, A.; Rajendran, L., Mathematical modelling of enzyme kinetics reaction mechanisms and analytical solutions of non-linear reaction equations, J Math Chem, 48, 2, 179-186 (2010) · Zbl 1196.92020
[12] Goh, S.; Noorani, S.; Hashim, I., Introducing variational iteration method to a biochemical reaction model, Nonlinear Anal-Real, 11, 4, 2264-2272 (2010) · Zbl 1195.65093
[13] Hashim, I.; Chowdhury, M. S.H.; Mawa, S., On multistage homotopy-perturbation method applied to nonlinear biochemical reaction model, Chaos Solitons Fract, 36, 4, 823-827 (2008) · Zbl 1210.65149
[14] Alawneh, A., Application of the multistep generalized differential transform method to solve a time-fractional enzyme kinetics, Discrete Dyn Nat Soc, 592938, 7 (2013) · Zbl 1264.65128
[15] Chen, C. K.; Ho, S. H., Application of differential transformation to eigenvalue problems, Appl Math Comput, 79, 173-188 (1996) · Zbl 0879.34077
[16] Chen, C. K.; Ho, S. H., Solving partial differential equation by differential transformation, Appl Math Comput, 106, 171-179 (1999) · Zbl 1028.35008
[17] Odibat, Z.; Momani, S.; Ertürk, V. S., Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput, 197, 2, 467-477 (2008) · Zbl 1141.65092
[18] Ertürk, V. S.; Odibat, Z.; Momani, S., An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of \(C D 4^+\) T-cells, Comput Math Appl, 62, 996-1002 (2011) · Zbl 1228.92064
[19] Odibat, M.; Bertelle, C.; Aziz-Alaoui, M.; Duchamp, G. H.E., A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput Math Appl, 59, 4, 1462-1472 (2010) · Zbl 1189.65170
[20] Momani, S.; Odibat, Z., A novel method for nonlinear fractional partial differential equations: Combination of DTM and generalized taylor’s formula, J Comput Appl Math, 220, 85-95 (2008) · Zbl 1148.65099
[21] Odibat, Z.; Shawagfeh, N., Generalized taylors formula, Appl Math Comput, 186, 286-293 (2007) · Zbl 1122.26006
[22] Gatenby, R.; Vincent, T., An evolutionary model of carcinogenesis, Cancer Res, 63, 6212-6220 (2003)
[23] (Deutsch, A.; Brusch, L.; Byrne, H.; de Vries, G.; Herzel, H., Mathematical modeling of biological systems, Volume, I (2007), Birkhäuser: Birkhäuser Boston), 193-203 · Zbl 1123.92001
[24] Rihan, F., Numerical modeling of fractional-order biological systems, Abstr Appl Anal, 816803, 11 (2013) · Zbl 1470.65131
[25] Borges, F.; Iarosz, K.; Ren, H.; Batista, A.; Baptista, M.; Viana, R., Model for tumour growth with treatment by continuous or pulsed chemotherapy, Biosystems, 114, 43-48 (2014)
[26] Piotrowska, M., An immune system-tumour interactions model with discrete time delay: Model analysis and validation, Commun Nonlinear Sci Numer Simul (2015)
[27] Valle, P.; Starkov, K.; Coria, L., Global stability and tumor clearance conditions for a cancer chemotherapy system, Commun Nonlinear Sci Numer Simul (2016) · Zbl 1510.92104
[28] Zheng, Q.; Shen, J., Dynamics and pattern formation in a cancer network with diffusion, Communications in Nonlinear Science and Numerical Simulation, 27, 93109 (2015) · Zbl 1457.92087
[29] Abdeljawad, T., On Riemann and caputo fractional differences, Comput Math Appl, 62, 1602-1611 (2011) · Zbl 1228.26008
[30] Čermák, J.; Nechvátal, L., On (q, h)-analogue of fractional calculus, J Nonlinear Math Phys, 17, 1, 51-68 (2010) · Zbl 1189.26006
[31] Rahmat, M. R.S.; Noorani, M. S.M., Caputo type fractional difference operator and its application on discrete time scales, Adv Difference Equ, 2015, 160 (2015) · Zbl 1422.26008
[32] Ortigueira, M.; Coito, F., From differences to derivatives, Fract Calc Appl Anal, 7, 4, 459-471 (2004) · Zbl 1125.26011
[33] Podlubny, I.; Skovranek, T.; Vinagre Jara, B. M.; Petras, I.; Verbitsky, V.; Chen, Y. Q., Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders, Phil Trans R Soc A, 371, 20120153 (2013) · Zbl 1339.65094
[34] Kostrobij, P.; Tokarchuk, R.; Tokarchuk, M.; Markiv, B., Zubarev nonequilibrium statistical operator method in renyi statistics. reaction-diffusion processes, Condens Matter Phys, 17, 3 (2014) · Zbl 1313.82008
[35] Dimitrov, S.; Velikova, G.; Beschkov, V.; Markov, S., On the numerical computation of enzyme kinetic parameters, Biomath Commun, 1, 2 (2014)
[36] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and applications of fractional differential equations (2006), Elsevier: Elsevier Amsterdam, The Netherlands · Zbl 1092.45003
[37] Ferreira, R. A.C.; Torres, D. F.M., Fractional \(h\)-difference equations arising from the calculus of variations, Appl Anal Discrete Math, 5, 110-121 (2011) · Zbl 1289.39007
[38] Atici, F.; Eloe, P. W., A transform method in discrete fractional calculus, IJDE, 2, 2, 165-176 (2007)
[39] Čermák, J.; Kisela, T.; Nechvátal, L., Discrete Mittag-Leffler functions in linear fractional difference equations, Abstr Appl Anal, 565067, 22 (2011) · Zbl 1220.39010
[40] Samko, S.; Kilbas, A.; Marichev, O., Fractional integrals and derivatives, theory and applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon, Switzerland · Zbl 0818.26003
[41] Tsallis, C., Nonextensive statistics: theoretical, experimental and computational evidences and connections, Braz J Phys, 29, 1 (1999)
[42] Cao, X.; Li, Y., Fractional Runge-Kutta methods for nonlinear fractional differential equation, JNSA, 2, 3-4, 189-194 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.