×

The Virasoro fusion kernel and Ruijsenaars’ hypergeometric function. (English) Zbl 1456.81400

Summary: We show that the Virasoro fusion kernel is equal to Ruijsenaars’ hypergeometric function up to normalization. More precisely, we prove that the Virasoro fusion kernel is a joint eigenfunction of four difference operators. We find a renormalized version of this kernel for which the four difference operators are mapped to four versions of the quantum relativistic hyperbolic Calogero-Moser Hamiltonian tied with the root system \(BC_1\). We consequently prove that the renormalized Virasoro fusion kernel and the corresponding quantum eigenfunction, the (renormalized) Ruijsenaars hypergeometric function, are equal.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81Q80 Special quantum systems, such as solvable systems
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
17B22 Root systems

References:

[1] Alday, LF; Gaiotto, D.; Gukov, S.; Tachikawa, Y.; Verlinde, H., Loop and surface operators in N=2 gauge theory and Liouville modular geometry, J. High Energy Phys., 2010, 113 (2010) · Zbl 1269.81078 · doi:10.1007/JHEP01(2010)113
[2] Alday, LF; Gaiotto, D.; Tachikawa, Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys., 91, 167-197 (2010) · Zbl 1185.81111 · doi:10.1007/s11005-010-0369-5
[3] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380 (1984) · Zbl 0661.17013 · doi:10.1016/0550-3213(84)90052-X
[4] van de Bult, FJ, Ruijsenaars’ hypergeometric function and the modular double of \(U_q(sl(2, C))\), Adv. Math., 204, 53971 (2006)
[5] van de Bult, FJ; Rains, EM; Stokman, JV, Properties of generalized univariate hypergeometric functions, Commun. Math. Phys., 275, 3795 (2007) · Zbl 1144.33007
[6] Collier, S.; Gobeil, Y.; Maxfiel, H.; Perlmutter, E., Quantum Regge trajectories and the Virasoro analytic bootstrap, J. High Energy Phys., 2019, 212 (2019) · Zbl 1416.81143 · doi:10.1007/JHEP05(2019)212
[7] Chang, CM; Lin, YH, Bootstrap, universality and horizons, J. High Energy Phys., 2016, 68 (2016) · Zbl 1390.83094 · doi:10.1007/JHEP10(2016)068
[8] Drukker, N.; Gomis, J.; Okuda, T.; Teschner, J., Gauge theory loop operators and liouville theory, J. High Energy Phys., 2010, 57 (2010) · Zbl 1270.81134 · doi:10.1007/JHEP02(2010)057
[9] Faddeev, L.; Kashaev, R., Quantum dilogarithm, Mod. Phys. Lett., 9, 265-282 (1994) · Zbl 0866.17010 · doi:10.1142/S0217732394000447
[10] Hadasz, L.; Jaskolski, Z.; Piatek, M., Analytic continuation formulae for the BPZ conformal blocks, Acta Phys. Polon. B, 36, 845-864 (2005)
[11] Hadasz, L.; Jaskólski, Z.; Suchanek, P., Modular bootstrap in Liouville field theory, Phys. Lett. B, 685, 79 (2010) · doi:10.1016/j.physletb.2010.01.036
[12] Kusuki, Y., Light cone bootstrap in general 2D CFTs and entanglement from light cone singularity, J. High Energy Phys., 2019, 25 (2019) · Zbl 1409.81125 · doi:10.1007/JHEP01(2019)025
[13] Koornwinder, T.H.: Askey-Wilson polynomials for root systems of type \(BC\), in: Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), 189 204, Contemp. Math., 138, Am. Math. Soc., Providence, RI (1992) · Zbl 0797.33014
[14] Koornwinder, TH; Mazzocco, M., Dualities in the q-Askey scheme and degenerate DAHA, Stud. Appl. Math., 141, 424473 (2018) · Zbl 1408.33032 · doi:10.1111/sapm.12229
[15] Lenells, J.; Roussillon, J., Confluent conformal blocks of the second kind, J. High Energy Phys., 2020, 133 (2020) · Zbl 1437.81079 · doi:10.1007/JHEP06(2020)133
[16] Moore, G.; Seiberg, N., Classical and quantum conformal field theory, Commun. Math. Phys., 123, 177-254 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[17] Nemkov, NA, Fusion transformations in Liouville theory, Theo. Math. Phys., 189, 1574-1591 (2016) · Zbl 1361.81139 · doi:10.1134/S0040577916110040
[18] Nemkov, NA, On modular transformations of toric conformal blocks, J. High Energy Phys., 2015, 39 (2015) · Zbl 1388.81687 · doi:10.1007/JHEP10(2015)039
[19] Noumi, M., Stokman, J.V.: Askey-Wilson polynomials: an affine Hecke algebra approach, Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Science Publication, Hauppauge, NY, 2004, pp. 111144. MR 2085854 (2005h:42057) · Zbl 1096.33008
[20] Nidaiev, I., Teschner, J.: On the relation between the modular double of \(U_q(sl(2,R))\) and the quantum Teichmüller theory. arXiv:1302.3454 [math-ph]
[21] Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group. arXiv:hep-th/9911110 · Zbl 0988.81068
[22] Ponsot, B.; Teschner, J., Clebsch-Gordan and Racah-Wigner coefficients for a continuous series of representations of \(\cal{U}_q(\mathfrak{sl}(2,\mathbb{R}))\), Commun. Math. Phys., 224, 613-655 (2001) · Zbl 1010.33013 · doi:10.1007/PL00005590
[23] Ribault, S.: Conformal field theory on the plane. arXiv:1406.4290v5 [hep-th] · Zbl 1272.81178
[24] Ruijsenaars, S.: Systems of Calogero-Moser type, Particles and fields, 251-352
[25] Ruijsenaars, S., First order analytic difference equations and integrable quantum systems, J. Math. Phys., 38, 1069 (1997) · Zbl 0877.39002 · doi:10.1063/1.531809
[26] Ruijsenaars, S., A generalized hypergeometric function satisfying four analytic difference equations of Askey-Wilson type, Commun. Math. Phys., 206, 639-690 (1999) · Zbl 0944.33014 · doi:10.1007/PL00005522
[27] Ruijsenaars, S.: A generalized hypergeometric function II. Asymptotics and D4 Symmetry, Commun. Math. Phys. 243, 389412 (2003) · Zbl 1092.33017
[28] Ruijsenaars, S.: A generalized hypergeometric function III. Associated Hilbert Space Transform, Commun. Math. Phys. 243, 413448 (2003) · Zbl 1092.33007
[29] Ruijsenaars, S.: A relativistic conical function and its Whittaker Limits, SIGMA 7 (2011), 101, 54 pages · Zbl 1244.33001
[30] Ruijsenaars, SNM, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Commun. Math. Phys., 110, 191213 (1987) · Zbl 0673.58024 · doi:10.1007/BF01207363
[31] Ruijsenaars, SNM; Schneider, H., A new class of integrable systems and its relation to solitons, Ann. Phys. (NY), 170, 370405 (1986) · Zbl 0608.35071 · doi:10.1016/0003-4916(86)90097-7
[32] Spiridonov, V.P.: Theta hypergeometric integrals. Algebra i Analiz 15(6), 161-215 (2003) (St. Petersburg Math. J. 15(6), 929-967 (2004)) · Zbl 1071.33011
[33] Schrader, G., Shapiro, A.: Continuous tensor categories from quantum groups I: algebraic aspects. arXiv:1708.08107 [math.RT]
[34] Schrader, G., Shapiro, A.: On b-Whittaker functions. arXiv:1806.00747 [math-ph]
[35] Teschner, J.: Liouville theory revisited, Class. Quant. Grav. 18, R153R222 (2001) · Zbl 1022.81047
[36] Teschner, J.: A lecture on Liouville vertex operators, Int. J. Mod. Phys. A 19S2, 436458 (2004) · Zbl 1080.81060
[37] Teschner, J., Vartanov, G.: Supersymmetric gauge theories, Quantization of \(\cal{M}_{\text{flat}} \), and conformal field theory. arXiv:1302.3778 [hep-th] · Zbl 1296.81038
[38] Teschner, J.; Vartanov, G., 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories, Lett. Math. Phys., 104, 527551 (2014) · Zbl 1296.81038 · doi:10.1007/s11005-014-0684-3
[39] Terashima, Y.; Yamazaki, M., SL \((2, \mathbb{R} )\) Chern-Simons, Liouville, and gauge theory on duality walls, J. High Energy Phys., 2011, 135 (2011) · Zbl 1298.81332 · doi:10.1007/JHEP08(2011)135
[40] van Diejen, JF, Integrability of difference Calogero-Moser systems, J. Math. Phys., 35, 2983 (1994) · Zbl 0805.58027 · doi:10.1063/1.530498
[41] Woronowicz, SL, Quantum exponential function, Rev. Math. Phys., 12, 873-920 (2000) · Zbl 0961.47013 · doi:10.1142/S0129055X00000344
[42] Al, B. Zamolodchikov.: Conformal symmetry in two-dimensional space: Recursion representation of conformal block, TMF 73, : 103-110. Theor. Math. Phys. 73(1987), 1088-1093 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.