×

Random matrix theory for complexity growth and black hole interiors. (English) Zbl 1521.83125

Summary: We study a precise and computationally tractable notion of operator complexity in holographic quantum theories, including the ensemble dual of Jackiw-Teitelboim gravity and two-dimensional holographic conformal field theories. This is a refined, “microcanonical” version of K-complexity that applies to theories with infinite or continuous spectra (including quantum field theories), and in the holographic theories we study exhibits exponential growth for a scrambling time, followed by linear growth until saturation at a time exponential in the entropy – a behavior that is characteristic of chaos. We show that the linear growth regime implies a universal random matrix description of the operator dynamics after scrambling. Our main tool for establishing this connection is a “complexity renormalization group” framework we develop that allows us to study the effective operator dynamics for different timescales by “integrating out” large K-complexities. In the dual gravity setting, we comment on the empirical match between our version of K-complexity and the maximal volume proposal, and speculate on a connection between the universal random matrix theory dynamics of operator growth after scrambling and the spatial translation symmetry of smooth black hole interiors.

MSC:

83C57 Black holes
15B52 Random matrices (algebraic aspects)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83C80 Analogues of general relativity in lower dimensions
83C45 Quantization of the gravitational field
81R15 Operator algebra methods applied to problems in quantum theory

References:

[1] Magán, JM, Black holes, complexity and quantum chaos, JHEP, 09, 043 (2018) · Zbl 1398.83052 · doi:10.1007/JHEP09(2018)043
[2] X.-L. Qi and A. Streicher, Quantum Epidemiology: Operator Growth, Thermal Effects, and SYK, JHEP08 (2019) 012 [arXiv:1810.11958] [INSPIRE]. · Zbl 1421.83103
[3] Roberts, DA; Stanford, D.; Streicher, A., Operator growth in the SYK model, JHEP, 06, 122 (2018) · Zbl 1395.81244 · doi:10.1007/JHEP06(2018)122
[4] Magán, JM; Simón, J., On operator growth and emergent Poincaré symmetries, JHEP, 05, 071 (2020) · Zbl 1437.81072 · doi:10.1007/JHEP05(2020)071
[5] Susskind, L.; Zhao, Y., Complexity and Momentum, JHEP, 21, 239 (2020) · Zbl 1461.83021
[6] Zhao, Y., Collision in the interior of wormhole, JHEP, 21, 144 (2020) · Zbl 1461.83038
[7] Haehl, FM; Zhao, Y., Size and momentum of an infalling particle in the black hole interior, JHEP, 06, 056 (2021) · Zbl 1466.83031 · doi:10.1007/JHEP06(2021)056
[8] Haehl, FM; Zhao, Y., Diagnosing collisions in the interior of a wormhole, Phys. Rev. D, 104, L021901 (2021) · doi:10.1103/PhysRevD.104.L021901
[9] Haehl, FM; Streicher, A.; Zhao, Y., Six-point functions and collisions in the black hole interior, JHEP, 08, 134 (2021) · Zbl 1469.83013 · doi:10.1007/JHEP08(2021)134
[10] Sekino, Y.; Susskind, L., Fast Scramblers, JHEP, 10, 065 (2008) · doi:10.1088/1126-6708/2008/10/065
[11] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[12] Susskind, L., Entanglement is not enough, Fortsch. Phys., 64, 49 (2016) · Zbl 1429.81021 · doi:10.1002/prop.201500095
[13] D.E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi and E. Altman, A Universal Operator Growth Hypothesis, Phys. Rev. X9 (2019) 041017 [arXiv:1812.08657] [INSPIRE].
[14] Barbón, JLF; Rabinovici, E.; Shir, R.; Sinha, R., On The Evolution Of Operator Complexity Beyond Scrambling, JHEP, 10, 264 (2019) · Zbl 1427.81114 · doi:10.1007/JHEP10(2019)264
[15] Rabinovici, E.; Sánchez-Garrido, A.; Shir, R.; Sonner, J., Operator complexity: a journey to the edge of Krylov space, JHEP, 06, 062 (2021) · Zbl 1466.81043 · doi:10.1007/JHEP06(2021)062
[16] Jian, S-K; Swingle, B.; Xian, Z-Y, Complexity growth of operators in the SYK model and in JT gravity, JHEP, 03, 014 (2021) · Zbl 1461.83044 · doi:10.1007/JHEP03(2021)014
[17] Viswanath, V.; Müller, G., The recursion method: application to many-body dynamics (1994), Heidelberg Germany: Springer, Heidelberg Germany · Zbl 0853.60087 · doi:10.1007/978-3-540-48651-0
[18] Dymarsky, A.; Smolkin, M., Krylov complexity in conformal field theory, Phys. Rev. D, 104, L081702 (2021) · doi:10.1103/PhysRevD.104.L081702
[19] A. Dymarsky and A. Gorsky, Quantum chaos as delocalization in Krylov space, Phys. Rev. B102 (2020) 085137 [arXiv:1912.12227] [INSPIRE].
[20] T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys. B253 (1985) 173 [INSPIRE].
[21] T. Dray and G. ’t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys.99 (1985) 613 [INSPIRE].
[22] Barbón, JLF; Martín-García, J.; Sasieta, M., Momentum/Complexity Duality and the Black Hole Interior, JHEP, 07, 169 (2020) · Zbl 1451.83034 · doi:10.1007/JHEP07(2020)169
[23] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
[24] Stanford, D.; Witten, E., Fermionic Localization of the Schwarzian Theory, JHEP, 10, 008 (2017) · Zbl 1383.83099 · doi:10.1007/JHEP10(2017)008
[25] P. Saad, Late Time Correlation Functions, Baby Universes, and ETH in JT Gravity, arXiv:1910.10311 [INSPIRE].
[26] Ghosh, A.; Maxfield, H.; Turiaci, GJ, A universal Schwarzian sector in two-dimensional conformal field theories, JHEP, 05, 104 (2020) · Zbl 1437.83094 · doi:10.1007/JHEP05(2020)104
[27] P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
[28] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate Thermalization and Disorder Averaging in Gravity, Phys. Rev. Lett.125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].
[29] Mertens, TG; Turiaci, GJ; Verlinde, HL, Solving the Schwarzian via the Conformal Bootstrap, JHEP, 08, 136 (2017) · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[30] Yang, Z., The Quantum Gravity Dynamics of Near Extremal Black Holes, JHEP, 05, 205 (2019) · Zbl 1416.83079 · doi:10.1007/JHEP05(2019)205
[31] A.R. Brown, H. Gharibyan, H.W. Lin, L. Susskind, L. Thorlacius and Y. Zhao, Complexity of Jackiw-Teitelboim gravity, Phys. Rev. D99 (2019) 046016 [arXiv:1810.08741] [INSPIRE].
[32] A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius and Y. Zhao, Falling Toward Charged Black Holes, Phys. Rev. D98 (2018) 126016 [arXiv:1804.04156] [INSPIRE].
[33] J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
[34] C. Murthy and M. Srednicki, Bounds on chaos from the eigenstate thermalization hypothesis, Phys. Rev. Lett.123 (2019) 230606 [arXiv:1906.10808] [INSPIRE].
[35] Collier, S.; Maloney, A.; Maxfield, H.; Tsiares, I., Universal dynamics of heavy operators in CFT_2, JHEP, 07, 074 (2020) · Zbl 1451.81343 · doi:10.1007/JHEP07(2020)074
[36] J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B270 (1986) 186 [INSPIRE]. · Zbl 0689.17016
[37] Hartman, T.; Keller, CA; Stoica, B., Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP, 09, 118 (2014) · Zbl 1333.81368 · doi:10.1007/JHEP09(2014)118
[38] Collier, S.; Gobeil, Y.; Maxfield, H.; Perlmutter, E., Quantum Regge Trajectories and the Virasoro Analytic Bootstrap, JHEP, 05, 212 (2019) · Zbl 1416.81143 · doi:10.1007/JHEP05(2019)212
[39] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
[40] A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action, and black holes, Phys. Rev. D93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].
[41] Jefferson, R.; Myers, RC, Circuit complexity in quantum field theory, JHEP, 10, 107 (2017) · Zbl 1383.81233 · doi:10.1007/JHEP10(2017)107
[42] S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett.120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].
[43] K. Hashimoto, N. Iizuka and S. Sugishita, Time evolution of complexity in Abelian gauge theories, Phys. Rev. D96 (2017) 126001 [arXiv:1707.03840] [INSPIRE].
[44] Yang, R-Q; Niu, C.; Zhang, C-Y; Kim, K-Y, Comparison of holographic and field theoretic complexities for time dependent thermofield double states, JHEP, 02, 082 (2018) · Zbl 1387.81279 · doi:10.1007/JHEP02(2018)082
[45] Chapman, S., Complexity and entanglement for thermofield double states, SciPost Phys., 6, 034 (2019) · doi:10.21468/SciPostPhys.6.3.034
[46] Hackl, L.; Myers, RC, Circuit complexity for free fermions, JHEP, 07, 139 (2018) · Zbl 1395.81225 · doi:10.1007/JHEP07(2018)139
[47] R. Khan, C. Krishnan and S. Sharma, Circuit Complexity in Fermionic Field Theory, Phys. Rev. D98 (2018) 126001 [arXiv:1801.07620] [INSPIRE].
[48] Balasubramanian, V.; DeCross, M.; Kar, A.; Parrikar, O., Binding Complexity and Multiparty Entanglement, JHEP, 02, 069 (2019) · Zbl 1411.81168 · doi:10.1007/JHEP02(2019)069
[49] Erdmenger, J.; Gerbershagen, M.; Weigel, A-L, Complexity measures from geometric actions on Virasoro and Kac-Moody orbits, JHEP, 11, 003 (2020) · Zbl 1456.81371 · doi:10.1007/JHEP11(2020)003
[50] L. Susskind, Black Holes and Complexity Classes, arXiv:1802.02175 [INSPIRE].
[51] P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett.122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].
[52] Balasubramanian, V.; Decross, M.; Kar, A.; Parrikar, O., Quantum Complexity of Time Evolution with Chaotic Hamiltonians, JHEP, 01, 134 (2020) · doi:10.1007/JHEP01(2020)134
[53] A. Bouland, B. Fefferman and U. Vazirani, Computational pseudorandomness, the wormhole growth paradox, and constraints on the AdS/CFT duality, arXiv:1910.14646 [INSPIRE].
[54] F.G.S.L. Brandão, W. Chemissany, N. Hunter-Jones, R. Kueng and J. Preskill, Models of Quantum Complexity Growth, PRX Quantum2 (2021) 030316 [arXiv:1912.04297] [INSPIRE].
[55] M. Flory and M.P. Heller, Geometry of Complexity in Conformal Field Theory, Phys. Rev. Res.2 (2020) 043438 [arXiv:2005.02415] [INSPIRE].
[56] Balasubramanian, V.; DeCross, M.; Kar, A.; Li, YC; Parrikar, O., Complexity growth in integrable and chaotic models, JHEP, 07, 011 (2021) · Zbl 1468.81055 · doi:10.1007/JHEP07(2021)011
[57] Belin, A.; Lewkowycz, A.; Sárosi, G., Complexity and the bulk volume, a new York time story, JHEP, 03, 044 (2019) · Zbl 1414.81191 · doi:10.1007/JHEP03(2019)044
[58] J.L.F. Barbón, J. Martin-Garcia and M. Sasieta, Proof of a Momentum/Complexity Correspondence, Phys. Rev. D102 (2020) 101901 [arXiv:2006.06607] [INSPIRE].
[59] Barbón, JLF; Martin-Garcia, J.; Sasieta, M., A Generalized Momentum/Complexity Correspondence, JHEP, 04, 250 (2021) · Zbl 1462.83004 · doi:10.1007/JHEP04(2021)250
[60] Sfetsos, K., On gravitational shock waves in curved space-times, Nucl. Phys. B, 436, 721 (1995) · Zbl 1052.83521 · doi:10.1016/0550-3213(94)00573-W
[61] R.-G. Cai and J.B. Griffiths, Null particle solutions in three-dimensional (anti-)de Sitter spaces, J. Math. Phys.40 (1999) 3465 [gr-qc/9905011] [INSPIRE]. · Zbl 0988.83024
[62] A. Magnus, Asymptotic behaviour of continued fraction coefficients related to singularities of the weight function, in The Recursion Method and Its Applications, D.G. Pettifor and D.L. Weaire eds., Springer, Heidelberg Germany (1987), pg. 22.
[63] Lubinsky, D., A survey of general orthogonal polynomials for weights on finite and infinite intervals, Acta Appl. Math., 10, 237 (1987) · Zbl 0696.42016
[64] Viswanath, VS; Zhang, S.; Stolze, J.; Müller, G., Ordering and fluctuations in the ground state of the one-dimensional and two-dimensional s = 1/2xxz antiferromagnets: A study of dynamical properties based on the recursion method, Phys. Rev. B, 49, 9702 (1994) · doi:10.1103/PhysRevB.49.9702
[65] Haydock, R., The recursive solution of the schrodinger equation, Solid State Phys., 35, 215 (1980) · doi:10.1016/S0081-1947(08)60505-6
[66] Grosso, G.; Pastori Parravicini, G., Continued Fractions in the Theory of Relaxation, Adv. Chem. Phys., 62, 81 (1985)
[67] Balasubramanian, V.; Marolf, D.; Rozali, M., Information Recovery From Black Holes, Gen. Rel. Grav., 38, 1529 (2006) · Zbl 1117.83062 · doi:10.1007/s10714-006-0344-8
[68] J. Richter, A. Dymarsky, R. Steinigeweg and J. Gemmer, Eigenstate thermalization hypothesis beyond standard indicators: Emergence of random-matrix behavior at small frequencies, Phys. Rev. E102 (2020) 042127 [arXiv:2007.15070] [INSPIRE].
[69] A. Altland, D. Bagrets, P. Nayak, J. Sonner and M. Vielma, From operator statistics to wormholes, Phys. Rev. Res.3 (2021) 033259 [arXiv:2105.12129] [INSPIRE].
[70] Kuijlaars, ABJ, Which eigenvalues are found by the lanczos method?, SIAM J. Matrix Anal. Appl., 22, 306 (2000) · Zbl 0969.65028 · doi:10.1137/S089547989935527X
[71] G. Menon, Lectures on random matrix theory, https://www.dam.brown.edu/people/menon/publications/notes/rmt-notes.pdf (2015).
[72] Van Assche, W., Orthogonal polynomials, associated polynomials and functions of the second kind, J. Comput. Appl. Math., 37, 237 (1991) · Zbl 0744.42012 · doi:10.1016/0377-0427(91)90121-Y
[73] Viswanath, VS; Müller, G., Recursion method in quantum spin dynamics: The art of terminating a continued fraction, J. Appl. Phys., 67, 5486 (1990) · doi:10.1063/1.345859
[74] Viswanath, VS; Müller, G., The recursion method applied to the t = 0 dynamics of the 1d s = 1/2 heisenberg and xy models, J. Appl. Phys., 70, 6178 (1991) · doi:10.1063/1.350036
[75] Papadodimas, K.; Raju, S., An Infalling Observer in AdS/CFT, JHEP, 10, 212 (2013) · doi:10.1007/JHEP10(2013)212
[76] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
[77] G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
[78] D.L. Jafferis and L. Lamprou, Inside the Hologram: Reconstructing the bulk observer’s experience, arXiv:2009.04476 [INSPIRE].
[79] Lin, HW; Maldacena, J.; Zhao, Y., Symmetries Near the Horizon, JHEP, 08, 049 (2019) · Zbl 1421.81121 · doi:10.1007/JHEP08(2019)049
[80] D. Stanford, More quantum noise from wormholes, arXiv:2008.08570 [INSPIRE].
[81] A. Blommaert, Dissecting the ensemble in JT gravity, arXiv:2006.13971 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.