×

Convexity properties of gradient maps associated to real reductive representations. (English) Zbl 1443.22015

A connected closed subgroup \(G \subset \mathrm{GL}(n,\mathbb{R})\) that is invariant under transposition is called a real reductive Lie group. The Lie algebra \(\mathfrak{g}\) of \(G\) can be considered as a subalgebra of the linear maps \(\mathrm{gl}(n,\mathbb{R})\) on \(\mathbb{R}^n\), with the exponential map \(\exp\) given by the regular exponential map of matrices. In that case, there exists a scalar product \(\langle \cdot, \cdot \rangle\) on \(V = \mathbb{R}^n\) such that \(G\) can be written as \[ G = K \exp(\mathfrak{p})\] with \(K = G \cap O(V)\) and \(\mathfrak{p} = \mathfrak{g} \cap \mathrm{Sym}(V)\). Here we denote by \(O(V)\) the orthogonal group with respect to the scalar product \(\langle \cdot, \cdot \rangle\) and by \(\mathrm{Sym}(V)\) the set of symmetric endomorphisms on \(V\). If \(\mathfrak{k}\) is the Lie algebra of the group \(K\), which is moreover the maximal compact subgroup of \(G\), then \(\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}\) is the Cartan decomposition of \(\mathfrak{g}\). We can define the map \(\psi: G \times V \to \mathbb{R}\) via \[\psi(g,x) = \frac{1}{2}\left( \langle g x, gx \rangle - \langle x, x \rangle \right)\] and this is a Kempf-Ness function as defined in the third section of the paper. The study of real reductive groups via the Kempf-Ness function and corresponding gradient map, in particular their convexity properties, is very active and has for example lead to a better understanding of metrics with negative Ricci curvature on solvmanifolds, see [J. Deré and J. Lauret, Math. Nachr. 292, No. 7, 1462–1481 (2019; Zbl 1425.53042)].
In the paper under review, the author gives numerous different results about the image of the gradient map. For example, the image of the gradient map for abelian subalgebras of \(\mathfrak{p}\) is computed, which generalizes a result of Kac and Peterson from the complex numbers to the reals [V. G. Kac and D. H. Peterson, Invent. Math. 76, 1–14 (1984; Zbl 0534.17008)]. On the other hand, a new proof of the Hilbert-Mumford criterion for real reductive groups is given in the last section.

MSC:

22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods
53D20 Momentum maps; symplectic reduction
14L24 Geometric invariant theory

References:

[1] Atiyah, M. F., Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc., 14, 1, 1-15 (1982) · Zbl 0482.58013
[2] Azad, H.; Loeb, J.-J., Plurisubharmonic functions and the Kempf-Ness theorem, Bull. Lond. Math. Soc., 25, 2, 162-168 (1993) · Zbl 0795.32002
[3] Berline, N.; Vergne, M., Hamiltonian manifolds and the moment map (2011), preprint http://nicole.berline.perso.math.cnrs.fr/cours-Fudan.pdf
[4] Biliotti, L.; Ghigi, A., Homogeneous bundles and the first eigenvalue of symmetric spaces, Ann. Inst. Fourier (Grenoble), 58, 7, 2315-2331 (2008) · Zbl 1161.53064
[5] Biliotti, L.; Ghigi, A., Satake-Furstenberg compactifications, the moment map and \(\lambda_1\), Amer. J. Math., 135, 1, 237-274 (2013) · Zbl 1261.53050
[6] Biliotti, L.; Ghigi, A., Stability of measures on Kähler manifolds, Adv. Math., 317, 1108-1150 (2017) · Zbl 1355.53072
[7] Biliotti, L.; Ghigi, A., Remarks on the abelian convexity theorem, Proc. Amer. Math. Soc., 146, 12, 5409-5419 (2018) · Zbl 1411.53073
[8] Biliotti, L.; Ghigi, A.; Heinzner, P., Polar orbitopes, Comm. Anal. Geom., 21, 3, 579-606 (2013) · Zbl 1279.22017
[9] Biliotti, L.; Ghigi, A.; Heinzner, P., Coadjoint orbitopes, Osaka J. Math., 51, 4, 935-968 (2014) · Zbl 1305.22011
[10] Biliotti, L.; Ghigi, A.; Heinzner, P., Invariant convex sets in polar representations, Israel J. Math., 213, 423-441 (2016) · Zbl 1351.52002
[11] Biliotti, L.; Raffero, A., Convexity theorems for the gradient map for the gradient map on probability measures, Complex Manifolds, 5, 133-145 (2018) · Zbl 1404.46024
[12] Biliotti, L.; Zedda, M., Stability with respect to actions of real reductive Lie groups, Ann. Mat. Pura Appl. (4), 196, 6, 2185-2211 (2017) · Zbl 1397.14061
[13] Birestone, E.; Milman, P., Semianalytic and subanalytic sets, Inst. Hautes Etudes Sei Publ. Math., 67, 4-42 (1988) · Zbl 0674.32002
[14] Birkes, D., Orbits of linear algebraic groups, Ann. Math., 93, 2, 459-475 (1971) · Zbl 0212.36402
[15] C. Böhm, R.A. Lafuente, Real geometric invariant theory, preprint arXiv:1701.00643. · Zbl 1423.53079
[16] Borel, A., (Linear Algebraic Groups. Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126 (1991), Springer-Verlag: Springer-Verlag New York), 288 · Zbl 0726.20030
[17] Borel, A., Lie groups and linear algebraic groups I, (Complex and Real Groups, AMS. Complex and Real Groups, AMS, I.P. Stud. Adv. Math., vol. 37 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-49 · Zbl 1133.20001
[18] Borel, A.; Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. Math., 75, 2, 485-535 (1962) · Zbl 0107.14804
[19] Borel, A.; Tits, J., Groupes réductifs, Inst. Hautes Études Sci. Publ. Math., 27, 55-150 (1965) · Zbl 0145.17402
[20] Bourguignon, J.-P.; Li, P.; Yau, S.-T., Upper bound for the first eigenvalue of algebraic submanifolds, Comment. Math. Helv., 69, 2, 199-207 (1994) · Zbl 0814.53040
[21] Chevalley, C., Theorie des Groupes de Lie: Tome II (1951), Groupes Algebriques Hermann & Cie Paris · Zbl 0054.01303
[22] Deré, J.; Lauret, J., On ricci negative solvmanifolds and their nilradicals, Math. Nachr., 292, 7, 1462-1481 (2019) · Zbl 1425.53042
[23] Eberlein, P.; Jablonski, M., Closed orbit of semisimple Lie group actions and the real Hilbert-Munford functions, (New Developments in Lie Theory and Geometry (2009), Contemp. Math. Amer. Math. Soc.: Contemp. Math. Amer. Math. Soc. Providence, RI), 283-321 · Zbl 1185.14037
[24] V. Georgulas, J.W. Robbin, D.A. Salamon, The moment-weight inequality and the Hilbert-Mumford criterion. https://people.math.ethz.ch/salamon/PREPRINTS/momentweight-book.pdf. · Zbl 1492.14002
[25] Gichev, V. M., Polar representations of compact groups and convex hulls of their orbits, Differential Geom. Appl., 28, 5, 608-614 (2010) · Zbl 1209.57028
[26] Guillemin, V.; Sternberg, S., Convexity properties of the moment mapping, Invent. Math., 67, 3, 491-513 (1982) · Zbl 0503.58017
[27] Harish-Chandra, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19, 104-204 (1975) · Zbl 0315.43002
[28] Heinzner, P.; Schützdeller, P., Convexity properties of gradient maps, Adv. Math., 225, 3, 1119-1133 (2010) · Zbl 1198.53095
[29] Heinzner, P.; Schwarz, G. W., Cartan decomposition of the moment map, Math. Ann., 337, 1, 197-232 (2007) · Zbl 1110.32008
[30] Heinzner, P.; Schwarz, G. W.; Stötzel, H., Stratifications with respect to actions of real reductive groups, Compos. Math., 144, 1, 163-185 (2008) · Zbl 1133.32009
[31] Heinzner, P.; Stötzel, H., Critical points of the square of the momentum map, (Global Aspects of Complex Geometry (2006), Springer: Springer Berlin), 211-226 · Zbl 1117.32017
[32] Heinzner, P.; Stötzel, H., Semistable points with respect to real forms, Math. Ann., 338, 1-9 (2007) · Zbl 1129.32015
[33] Helgason, S., (Differential Geometry, Lie Groups and Symmetric Spaces, Corrected Reprint of the 1978 Original. Differential Geometry, Lie Groups and Symmetric Spaces, Corrected Reprint of the 1978 Original, Graduate Studies in Mathematics, vol. 34 (2001), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0993.53002
[34] J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes. · Zbl 0224.73083
[35] Jablonski, M., Distinguished orbits of reductive groups, Rocky Mountain J. Math., 42, 5, 1521-1549 (2012) · Zbl 1258.14054
[36] Kac, V. G.; Peterson, D. H., Unitary structure in representations of infinite-dimensional groups and a convexity theorem, Invent. Math., 76, 1, 1-14 (1984) · Zbl 0534.17008
[37] Kapovich, M.; Leeb, B.; Millson, J., Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Differential Geom., 81, 2, 297-354 (2009) · Zbl 1167.53044
[38] Kempf, G.; Ness, L., The length of vectors in representa tion spaces, (Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenha Gen, 1978). Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenha Gen, 1978), Lecture Notes in Math., vol. 732 (1979), Springer: Springer Berlin), 233-243 · Zbl 0407.22012
[39] Kirwan, F. C., (Cohomology of Quotients in Symplectic and Algebraic Geometry. Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, vol. 31 (1984), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0553.14020
[40] Knapp, A. W., (Lie Groups beyond an Introduction. Lie Groups beyond an Introduction, Progress in Mathematics, vol. 140 (2002), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA) · Zbl 1075.22501
[41] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry, Vol. I (1963), Interscience Publishers, a division of John Wiley & Sons: Interscience Publishers, a division of John Wiley & Sons New York-London · Zbl 0119.37502
[42] Kostant, B., On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. Éc. Norm. Supér. (4), 6, 413-455 (1973) · Zbl 0293.22019
[43] Lauret, J., On the moment map for the variety of Lie algebras, J. Funct. Anal., 202, 2, 392-423 (2003) · Zbl 1036.17010
[44] Lauret, J., A Canonical compatible metric for geometric structures on Nilmanifolds, Ann. Global Anal. Geom., 30, 2, 107-138 (2006) · Zbl 1102.53021
[45] Lerman, E., Gradient flow of the norm squared of the moment map, Enseign. Math., 51, 117-127 (2005) · Zbl 1103.53051
[46] Lojasiewicz, S., Ensembles Semi-Analytiques (1965), IHES
[47] Luna, D., Slices étale, Bull. Soc. Math. Fr. Mém., 33, 81-105 (1973) · Zbl 0286.14014
[48] Luna, D., Sur certaines opérations différentiables des groupes de Lie, Amer. J. Math., 97, 172-181 (1975) · Zbl 0334.57022
[49] Mostow, G. D., Self-adjoint groups, Ann. Math., 62, 2, 44-55 (1955) · Zbl 0065.01404
[50] Mumford, D.; Fogarty, J.; Kirwan, F., (Geometric Invariant Theory. Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34, No. 2 (1994), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0797.14004
[51] Mundet i. Riera, I., A Hitchin-Kobayashi correspondence for Kähler fibrations, J. Reine Angew. Math., 528, 41-80 (2000) · Zbl 1002.53057
[52] Mundet i. Riera, I., A Hilbert-Mumford criterion for polystability in Kaehler geometry, Trans. Amer. Math. Soc., 362, 10, 5169-5187 (2010) · Zbl 1201.53086
[53] Mundet i. Riera, I., Maximal weights in Kähler geometry: flag manifolds and Tits distance (with an appendix by A. H. W. Schmitt), (Vector Bundles and Complex Geometry. Vector Bundles and Complex Geometry, Contemp. Math., vol. 522 (2010), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 113-129 · Zbl 1217.53050
[54] Ness, L., Stratification of the null cone via the moment map, with an appendix by David Mumford, Amer. J. Math., 106, 1281-1329 (1984) · Zbl 0604.14006
[55] Richardson, R. W.; Slodowoy, P. J., Minumun vectors for real reductive algebraic groups, J. Lond. Math. Soc., 42, 2, 409-429 (1990) · Zbl 0675.14020
[56] Schneider, R., (Convex Bodies: The Brunn-Minkowski Theory. Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44 (1993), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0798.52001
[57] Schrijver, A., (Theory of Linear and Integer Programming. Theory of Linear and Integer Programming, Wiley-Interscience series in Discrete mathematics and optimization (1986), John Wiley & Sons: John Wiley & Sons Chichester) · Zbl 0665.90063
[58] Schwartz, G., The topology of algebraic quotients, (Topological Methods in Algebraic Tranformation Groups (New Brunswick, NJ, 1988). Topological Methods in Algebraic Tranformation Groups (New Brunswick, NJ, 1988), Prog. Math., vol. 131-151 (1989), Birkhäuser Boston) · Zbl 0708.14034
[59] Sjamaar, R., Holomorphic slices, symplectic reduction and multiplicity representations, Ann. of Math., 141, 2, 87-129 (1995) · Zbl 0827.32030
[60] Teleman, A., Symplectic stability, analytic stability in non-algebraic complex geometry, Internat. J. Math., 15, 2, 183-209 (2004) · Zbl 1089.53058
[61] Villa, P. B., Kählerian structures of coadjoint orbits of semisimple Lie groups and their orbihedra (2015), Fakultät für Mathematikder Ruhr-Universität Bochum, (Dissertation)
[62] Wallach, N. R., (Real Reductive Groups I. Real Reductive Groups I, Pure and Applied Mathematics, vol. 132 (1988), Academic Press, Inc.: Academic Press, Inc. Boston, MA) · Zbl 0666.22002
[63] Whitney, H., Elementary structure of real algebraic varieties, Ann. Math., 66, 545-556 (1957) · Zbl 0078.13403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.