×

Coadjoint orbitopes. (English) Zbl 1305.22011

For compact Lie groups \(K\) coadjoint orbitopes – convex hulls \(\mathcal {\hat O}\) of coadjoint orbits \(\mathcal O\) – are considered. Methods of convex geometry are used to give a description of such orbitopes in terms of faces for \(\mathcal {\hat O} \) and their extremal points.
There is some other convex set associated to \(\mathcal O\) – the Kostant polytope \(P\), which is the convex hull of a Weyl group orbit in the Lie algebra of some maximal torus \(T \subset K\). The main result of this paper gives a bijection \(\mathcal F(P)/W \to \mathcal F (\mathcal {\hat O} )/K\) between orbits of \(K\) on the space of faces \(\mathcal F(\mathcal {\hat O})\) for \(\mathcal {\hat O}\) and the orbit space of the natural action of the Weil group \(W\) on the space of faces \(\mathcal F (P)\) for \(P\).
Also some results about the complex geometry of \(\mathcal O\) are given. In particular, the following is proved. If \(F\) is a face of \(\mathcal {\hat O}\), then the set of extremal points \(\mathrm{ext} (F) \subset \mathcal {\hat O}\) is a closed orbit of some parabolic subgroup of the complexified Lie group \(G = K^{\mathbf C}\). Conversely, if \(P \subset G\) is a parabolic subgroup, then it has a unique closed orbit \(\mathcal O ^\prime \subset \mathcal O\) and there is a face \(F\) such that \(\mathrm{ext} (F) = \mathcal O ^\prime\).

MSC:

22E46 Semisimple Lie groups and their representations
47L07 Convex sets and cones of operators
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)

References:

[1] E. Arbarello, M. Cornalba and P.A. Griffiths: Geometry of Algebraic Curves, II, Grundlehren der Mathematischen Wissenschaften 268 , Springer, Heidelberg, 2011. · Zbl 1235.14002
[2] M.F. Atiyah: Convexity and commuting Hamiltonians , Bull. London Math. Soc. 14 (1982), 1-15. · Zbl 0482.58013 · doi:10.1112/blms/14.1.1
[3] M. Audin: Torus Actions on Symplectic Manifolds, second revised edition, Progress in Mathematics 93 , Birkhäuser, Basel, 2004. · Zbl 1062.57040
[4] A. Barvinok and I. Novik: A centrally symmetric version of the cyclic polytope , Discrete Comput. Geom. 39 (2008), 76-99. · Zbl 1184.52010 · doi:10.1007/s00454-007-9034-x
[5] M. Berger: Geometry, I, translated from the French by M. Cole and S. Levy, Universitext, Springer, Berlin, 1994.
[6] L. Biliotti and A. Ghigi: Satake-Furstenberg compactifications, the moment map and \(\lambda_{1}\) , Amer. J. Math. 135 (2013), 237-274. · Zbl 1261.53050 · doi:10.1353/ajm.2013.0006
[7] A. Borel and L. Ji: Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, Boston, MA, 2006. · Zbl 1100.22001
[8] J.-P. Bourguignon, P. Li and S.-T. Yau: Upper bound for the first eigenvalue of algebraic submanifolds , Comment. Math. Helv. 69 (1994), 199-207. · Zbl 0814.53040 · doi:10.1007/BF02564482
[9] \begingroup C. Carathéodory: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen , Math. Ann. 64 (1907), 95-115. \endgroup · JFM 38.0448.01 · doi:10.1007/BF01449883
[10] J.J. Duistermaat, J.A.C. Kolk and V.S. Varadarajan: Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups , Compositio Math. 49 (1983), 309-398. · Zbl 0524.43008
[11] V.M. Gichev: Polar representations of compact groups and convex hulls of their orbits , Differential Geom. Appl. 28 (2010), 608-614. · Zbl 1209.57028 · doi:10.1016/j.difgeo.2010.05.005
[12] V. Guillemin and S. Sternberg: Convexity properties of the moment mapping , Invent. Math. 67 (1982), 491-513. · Zbl 0503.58017 · doi:10.1007/BF01398933
[13] V. Guillemin and S. Sternberg: Symplectic Techniques in Physics, second edition, Cambridge Univ. Press, Cambridge, 1990. · Zbl 0576.58012
[14] G. Heckman: Projection of orbits and asymptotic behaviour of multiplicities of compact Lie groups , PhD thesis (1980).
[15] P. Heinzner, G.W. Schwarz and H. Stötzel: Stratifications with respect to actions of real reductive groups , Compos. Math. 144 (2008), 163-185. · Zbl 1133.32009 · doi:10.1112/S0010437X07003259
[16] A. Huckleberry: Introduction to group actions in symplectic and complex geometry ; in Infinite Dimensional Kähler Manifolds (Oberwolfach, 1995), DMV Sem. 31 , Birkhäuser, Basel, 2001, 1-129. · Zbl 0998.53056
[17] A.A. Kirillov: Lectures on the Orbit Method, Graduate Studies in Mathematics 64 , Amer. Math. Soc., Providence, RI, 2004.
[18] A.W. Knapp: Lie Groups Beyond an Introduction, second edition, Progress in Mathematics 140 , Birkhäuser Boston, Boston, MA, 2002. · Zbl 1075.22501
[19] B. Kostant: Quantization and unitary representations , I. Prequantization ; in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math. 170 , Springer, Berlin, 1970, 87-208. · Zbl 0223.53028 · doi:10.1007/BFb0079068
[20] B. Kostant: On convexity, the Weyl group and the Iwasawa decomposition , Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455 (1974). · Zbl 0293.22019
[21] D. McDuff and D. Salamon: Introduction to Symplectic Topology, second edition, Oxford Mathematical Monographs, Oxford Univ. Press, New York, 1998. · Zbl 0844.58029
[22] C.C. Moore: Compactifications of symmetric spaces , Amer. J. Math. 86 (1964), 201-218. · Zbl 0156.03202 · doi:10.2307/2373040
[23] R. Sanyal, F. Sottile and B. Sturmfels: Orbitopes , Mathematika 57 (2011), 275-314. · Zbl 1315.52001 · doi:10.1112/S002557931100132X
[24] I. Satake: On representations and compactifications of symmetric Riemannian spaces , Ann. of Math. (2) 71 (1960), 77-110. · Zbl 0094.34603 · doi:10.2307/1969880
[25] R. Schneider: Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44 , Cambridge Univ. Press, Cambridge, 1993. · Zbl 0798.52001
[26] Z. Smilansky: Convex hulls of generalized moment curves , Israel J. Math. 52 (1985), 115-128. \endthebibliography* · Zbl 0584.52003 · doi:10.1007/BF02776085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.