×

Numerical approximation based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem. (English) Zbl 1538.65474

Summary: We present a high-accuracy numerical method based on a decoupled dimensionality reduction scheme for Maxwell eigenvalue problem in spherical domains. Using the orthogonality of vector spherical harmonics and the variable separation approach, we decompose the original problem into two classes of decoupled one-dimensional TE mode and TM mode. For the TE mode, we establish a variational formulation and its discrete scheme and give the error estimations of the approximate eigenvalues and eigenfunctions. For the TM mode, it is different from TE mode which naturally meets the divergence-free condition and will not generate some spurious eigenvalues. We design a numerical algorithm based on a parameterized method to filter out the spurious eigenvalues. Finally, some numerical results are presented to confirm the theoretical results and validate the algorithms.
© 2023 John Wiley & Sons, Ltd.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
78A25 Electromagnetic theory (general)
78M30 Variational methods applied to problems in optics and electromagnetic theory
78M34 Model reduction in optics and electromagnetic theory
35A15 Variational methods applied to PDEs
Full Text: DOI

References:

[1] D.Boffi, Finite element approximation of eigenvalue problems, Acta Numer.19 (2010), 1-120. · Zbl 1242.65110
[2] A.Chatterjee, J. M.Jin, and J. L.Volakis, Computation of cavity resonances using edge‐based finite elements, IEEE Trans. Microw. Theory Tech.40 (1992), no. 11, 2106-2108.
[3] H. C.Hoyt, Numerical studies of the shapes of drift tubes and linac cavities, IEEE Trans. Nucl. Sci.12 (1965), no. 3, 153-155.
[4] M.Ilic and B.Notaros, Computation of 3‐D electromagnetic cavity resonances using hexahedral vector finite elements with hierarchical polynomial basis functions, IEEE Antennas Propagation Soc. Int. Symp.4 (2002), 682-685.
[5] J. H.Bramble, T.Kolev, and J. E.Pasciak, The approximation of the Maxwell eigenvalue problem using a least‐squares method, Math. Comput.74 (2005), no. 252, 1575-1598. · Zbl 1078.65100
[6] J.Sun and A.Zhou, Finite element methods for eigenvalue problems, CRC Press, Boca Raton, 2016.
[7] Z.Cendes and P.Silvester, Numerical solution of dielectric loaded waveguides: I‐finite‐element analysis, IEEE Trans. Microw. Theory Tech.18 (1970), no. 12, 1124-1131.
[8] J.Davies, F.Fernandez, and G.Philippou, Finite element analysis of all modes in cavities with circular symmetry, IEEE Trans. Microw. Theory Tech.30 (1982), no. 11, 1975-1980.
[9] F.Kikuchi, Weak formulations for finite element analysis of an electromagnetic eigenvalue problem, Sci. Papers Coll. Arts Sci. Univ. Tokyo38 (1988), 43-67. · Zbl 0689.65079
[10] P.Arbenz, R.Geus, and S.Adam, Solving Maxwell eigenvalue problems for accelerating cavities, Phys. Rev. Spec. Topics‐Accelerators Beams4 (2001), no. 2, 022001.
[11] P.Arbenz and R.Geus, Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems, Appl. Numer. Math.54 (2005), no. 2, 107-121. · Zbl 1127.65021
[12] A.Buffa, P.Houston, and I.Perugia, Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes, J. Comput. Appl. Math.204 (2007), no. 2, 317-333. · Zbl 1131.78007
[13] S. C.Brenner, F.Li, and L.Sung, Nonconforming Maxwell eigensolvers, J. Sci. Comput.40 (2009), no. 1, 51-85. · Zbl 1203.65236
[14] A.Buffa, P.Ciarlet, and E.Jamelot, Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements,Numer. Math.113 (2009), no. 4, 497-518. · Zbl 1180.78048
[15] P.CiarletJr. and G.Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations, Comput. Methods Appl. Mech. Eng.198 (2008), no. 2, 358-365. · Zbl 1194.78053
[16] R.Hiptmair, Finite elements in computational electromagnetism, Acta Numerica11 (2002), 237-339. · Zbl 1123.78320
[17] J.Zhou, X.Hu, L.Zhong, S.Shu, and L.Chen, Two‐grid methods for Maxwell eigenvalue problems, SIAM J. Numer. Anal.52 (2014), no. 4, 2027-2047. · Zbl 1304.78015
[18] D.Boffi, P.Guzman, and M.Neilan, Convergence of Lagrange finite elements for the Maxwell eigenvalue problem in two dimensions, IMA J. Numer. Anal.43 (2023), no. 2, 663-691. · Zbl 07673870
[19] D.Boffi, P.Fernandes, L.Gastaldi, and I.Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation, SIAM J. Numer. Anal.36 (1999), no. 4, 1264-1290. · Zbl 1025.78014
[20] S.Caorsi, P.Fernandes, and M.Raffetto, On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal.38 (2000), no. 2, 580-607. · Zbl 1005.78012
[21] A.Dello Russo and A.Alonso, Finite element approximation of Maxwell eigenproblems on curved Lipschitz polyhedral domains, Appl. Numer. Math.59 (2009), no. 8, 1796-1822. · Zbl 1172.65061
[22] D.Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math.87 (2000), no. 2, 229-246. · Zbl 0967.65106
[23] P.Monk and L.Demkowicz, Discrete compactness and the approximation of Maxwell’s equations in
[( {R}^3 \]\), Math. Comput.70 (2001), no. 234, 507-523. · Zbl 1035.65131
[24] S.Zaglmayr. (2006). High order finite element methods for electromagnetic field computation, PhD Thesis, Johannes Kepler University, Linz, Austria.
[25] N.Liu, Y.Tang, X.Zhu, L.Tobón, and Q. H.Liu, Higher‐order mixed spectral element method for Maxwell eigenvalue problem, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE, Orlando, FL, 2013, pp. 1646-1647.
[26] N.Liu, L.Tobón, Y.Tang, and Q. H.Liu, Mixed spectral element method for 2D Maxwell’s eigenvalue problem, Commun. Comput. Phys.17 (2015), no. 2, 458-486. · Zbl 1373.78443
[27] N.Liu, L.Tobón, Y.Zhao, Y.Tang, and Q. H.Liu, Mixed spectral‐element method for 3‐D Maxwell’s eigenvalue problem, IEEE Trans. Microw. Theory Tech.63 (2015), no. 2, 317-325.
[28] L.Ma, J.Shen, and L. L.Wang, Spectral approximation of time‐harmonic Maxwell equations in three‐dimensional exterior domains, Int. J. Numer. Anal. Model.12 (2015), no. 2, 366-383. · Zbl 1329.65286
[29] E. L.Hill, The theory of vector spherical harmonics, Am. J. Phys.22 (1954), no. 4, 211-214. · Zbl 0057.05303
[30] T.Hagstrom and S.Lau, Radiation boundary conditions for Maxwell’s equations: a review of accurate time‐domain formulations, J. Comput. Math.25 (2007), no. 3, 305-336.
[31] R. G.Barrera, G. A.Estevez, and J.Giraldo, Vector spherical harmonics and their application to magnetostatics, Eur. J. Phys.6 (1985), no. 4, 287-294.
[32] J. C.Nédélec, Acoustic and electromagnetic equations: integral representations for harmonic problems, Springer Science & Business Media, New York, 2001. · Zbl 0981.35002
[33] I.Babuška and J.Osborn, Eigenvalue problems, Handb. Numer. Anal.2 (1991), 641-787. · Zbl 0875.65087
[34] J.Shen and T.Tang, Spectral and high‐order methods with applications, Science Press, Beijing, 2006. · Zbl 1234.65005
[35] M.Costabel and M.Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math.93 (2002), no. 2, 239-277. · Zbl 1019.78009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.