×

Banach Gabor frames with Hermite functions: polyanalytic spaces from the Heisenberg group. (English) Zbl 1266.46020

A polynomial \(F(z)=\sum_{k=0}^{n-1} \overline{z}^k \,\varphi_k(z)\) in \(\overline{z}\) with analytic coefficients \(\varphi_k(z)\) is called a polyanalytic function. One denotes by \(\mathcal{F}_p^n(\mathbb{C})\) the Fock space of all polyanalytic functions of order \(n\) such that \[ \|F\|^p=\int_{\mathbb{C}} |F(z)|^p\, e^{-\pi |z|^2/2}\, dz \] is finite. The main result provides an interpolation formula with convergence in \(\mathcal{F}_p^n(\mathbb{C})\) as follows. Denote \(\Lambda=\alpha(\mathbb{Z}+i\mathbb{Z})\) and \(\Lambda^0=\frac{1}{\alpha}(\mathbb{Z}+i\mathbb{Z})\). Set \[ S_{\Lambda^0}^n(z)=\Bigl(\frac{\pi^n}{n!}\Bigr)^{1/2} e^{\pi |z|^2} \Bigl(\frac{d}{d z}\Bigr)^n\Bigl[e^{-\pi|z|^2} \frac{(\sigma_{\Lambda^0}(z))^{n+1}}{n!z}\Bigr], \] where \(\sigma_{\Lambda^0}(z)\) denotes the classical Weierstrass sigma function associated with \(\Lambda^0\). It is proved that, if \(\alpha<1/(n+1)\), then every \(F\in \mathcal{F}_p^n(\mathbb{C})\) possesses an expansion \[ F(z)=\sum_{\lambda\in \Lambda} F(\lambda) e^{\pi\overline{\lambda} z-\pi|\lambda|^2/2} S_{\Lambda^0}^n(z-\lambda) \] interpolating its samples, with convergence in the Fock space norm. In establishing this fact, Gabor frames with Hermite functions are studied and extended to Banach frames in modulation spaces, and mapping properties of the polyanalytic Bargmann transform in modulation spaces are established.

MSC:

46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
41A05 Interpolation in approximation theory
42C15 General harmonic expansions, frames
30H20 Bergman spaces and Fock spaces
46E15 Banach spaces of continuous, differentiable or analytic functions

References:

[1] DOI: 10.1016/j.acha.2009.11.004 · Zbl 1202.31006 · doi:10.1016/j.acha.2009.11.004
[2] Balan, R.Multiplexing of signals using superframes, Signal Image Process. XIII (2000), pp. 118–129
[3] DOI: 10.1007/s00208-009-0350-8 · Zbl 1184.42025 · doi:10.1007/s00208-009-0350-8
[4] DOI: 10.1007/BF00197317 · Zbl 0825.68649 · doi:10.1007/BF00197317
[5] DOI: 10.1016/j.crma.2006.12.013 · Zbl 1160.42013 · doi:10.1016/j.crma.2006.12.013
[6] DOI: 10.1007/s10444-007-9053-4 · Zbl 1171.42018 · doi:10.1007/s10444-007-9053-4
[7] Balk MB, Polyanalytic Functions (1991)
[8] DOI: 10.1216/rmjm/1181071888 · Zbl 0902.30030 · doi:10.1216/rmjm/1181071888
[9] DOI: 10.1007/BF02829782 · Zbl 1128.42014 · doi:10.1007/BF02829782
[10] DOI: 10.1090/S0894-0347-03-00444-2 · Zbl 1037.22012 · doi:10.1090/S0894-0347-03-00444-2
[11] DOI: 10.1016/j.jfa.2009.06.001 · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[12] Feichtinger, HG. Modulation spaces on locally compact abelian groups, inProceedings of International Conference on Wavelets and Applications 2002, Chennai, India, 2003, pp. 99–140 (Updated version of a Technical Report, University of Vienna, 1983)
[13] DOI: 10.1016/0022-1236(89)90055-4 · Zbl 0691.46011 · doi:10.1016/0022-1236(89)90055-4
[14] Feichtinger HG, A unified approach to atomic decompositions via integrable group representations, in Proceedings of the Function Spaces and Applications (1988) · Zbl 0658.22007
[15] DOI: 10.1007/BF01321715 · Zbl 0736.42022 · doi:10.1007/BF01321715
[16] DOI: 10.1007/s00041-004-8007-1 · Zbl 1055.42018 · doi:10.1007/s00041-004-8007-1
[17] Whittaker JM, Interpolatory Function Theory. Cambridge Tracts in Mathematics and Mathematical Physics, No. 33 (1935)
[18] Folland GB, Harmonic Analysis in Phase Space (1989) · Zbl 0682.43001 · doi:10.1515/9781400882427
[19] Brekke S, Math. Scand. 73 (1) pp 112– (1993) · Zbl 0789.30024 · doi:10.7146/math.scand.a-12459
[20] DOI: 10.1007/s00605-009-0177-0 · Zbl 1206.46029 · doi:10.1007/s00605-009-0177-0
[21] DOI: 10.1016/S0034-4877(10)80029-1 · Zbl 1242.42016 · doi:10.1016/S0034-4877(10)80029-1
[22] Vasilevski, NL.Poly-Fock spaces, Oper. Theory Adv. Appl. 117 (2000), pp. 371–386 · Zbl 0959.46016
[23] DOI: 10.1016/S0764-4442(97)80045-6 · Zbl 0892.32018 · doi:10.1016/S0764-4442(97)80045-6
[24] DOI: 10.1007/BF01320058 · Zbl 0461.43003 · doi:10.1007/BF01320058
[25] DOI: 10.1007/978-1-4612-2016-9_4 · doi:10.1007/978-1-4612-2016-9_4
[26] Gröchenig K, Foundations of Time-Frequency Analysis (2001) · doi:10.1007/978-1-4612-0003-1
[27] DOI: 10.4213/mzm465 · doi:10.4213/mzm465
[28] DOI: 10.1515/crll.2002.062 · Zbl 0999.30031 · doi:10.1515/crll.2002.062
[29] DOI: 10.1007/978-1-4612-2016-9_8 · doi:10.1007/978-1-4612-2016-9_8
[30] DOI: 10.1007/s00041-001-4017-4 · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[31] DOI: 10.1215/S0012-7094-97-08913-4 · Zbl 0892.42017 · doi:10.1215/S0012-7094-97-08913-4
[32] DOI: 10.1007/s00365-004-0592-3 · Zbl 1130.41304 · doi:10.1007/s00365-004-0592-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.