×

An alternative description of Gabor spaces and Gabor-Toeplitz operators. (English) Zbl 1242.42016

Let \(\phi \in L^2(\mathbb{R}^d)\) be a fixed normalized window function. Then the Gabor transform of a function \(f\in L^2(\mathbb{R}^d)\) with respect to \(\phi \) is defined as \((V_{\phi}f)(q,p)=\left\langle f,\phi _{q,p}\right\rangle _d\) where \(\phi _{q,p}(x)=\phi (x-q)e^{2\pi ipx}\). It is known that \((V_{\phi }f)(q,p)={\mathcal F}\left\{ f(.)\overline{\phi (.-q)}\right\} (p),\) where \({\mathcal F}\) is the Fourier transform of \(f(.)\overline{\phi (.-q)}.\) Consider the unitary operators \[ \begin{aligned} U_{1} &=I\otimes {\mathcal F}^{-1}:L^2(\mathbb{R}^{2d},dq\,dp)\\ &=L^2(\mathbb{R}^d,dq)\otimes L^2(\mathbb{R}^d,dp)\rightarrow L^2(\mathbb{R} ^d,dq)\otimes L^2(\mathbb{R}^d,dp)\end{aligned} \] and \[ U_2:L^2(\mathbb{R}^d,dq)\otimes L^2(\mathbb{R}^d,dp)\rightarrow L^2(\mathbb{R}^d,dq)\otimes L^2(\mathbb{R}^d,dp) \] given by \(U_2F(q,p)=F(p-q,p).\) The space \(V_{\phi }(L^2(\mathbb{R} ^d)),\) i.e. the images of \(L^2(\mathbb{R}^d)\) under the Gabor transform, will be called the space of Gabor transforms (Gabor space). These spaces are also called model spaces. The integral operator \[ (P_{\phi }F)(q,p)=\int\limits_{\mathbb{R}^{2d}}F(s,r)K_{s,r}(q,p)ds\,dr \] is the orthogonal projection onto the Gabor space, where \(K_{q,p}(s,r)=\left\langle\phi_{q,p},\phi _{r,s}\right\rangle _d\) is the kernel in the Gabor space with \[ F(q,p)=\left\langle F,K_{q,p}\right\rangle _{2d}=\int\limits_{\mathbb{R} ^{2d}}F(s,r)K_{s,r}(q,p)ds\,dr,\text{ }F\in V_{\phi}(L^2(\mathbb{R}^d)). \] In Section 2, the authors first characterize the Gabor space \(V_{\phi }(L^2(\mathbb{R} ^d))\) and prove the following theorem.
Theorem 1. The unitary operator \(U=U_2U_{1}\) gives an isometrical isomorphism of \(L^2(\mathbb{R} ^{2d},dq\,dp)\) onto itself under which
(i) the Gabor space \(V_{\phi }(L^2(\mathbb{R}^d))\) is mapped onto \(L_{\phi }\otimes L^2(\mathbb{R}^d,dp),\) where \(L_{\phi }\) is the one-dimensional subspace of \(L^2(\mathbb{R}^d,dq)\) generated by the function \(\ell _{\phi }(q)=\overline{\phi (q)};\)
(ii) the projection \(P_{\phi }\) is unitarily equivalent to \(UP_{\phi }U^{-1}=Q_{\phi }\otimes I,\) where \(Q_{\phi }\) is the one-dimensional projection of \(L^2(\mathbb{R} ^d,dq)\) onto \(L_{\phi }\) given as \[ (Q_{\phi }F)(q)=\overline{\phi (q)}\int\limits_{\mathbb{R}^d}F(r)\phi (r)dr. \] Denote by \(\Omega _1\) and \(\Omega _2=U_2(\Omega _1)\) the images of the space \(V_{\phi }(L^2(\mathbb{R}^d))\) under the mapping \(U_{1}\) and the set of all functions of the form \(F(q,p)=f(p)\overline{\phi (q)}\) respectively\(.\) Consider the isometrical imbedding \(R\phi:L^2(\mathbb{R}^d)\rightarrow L^2(\mathbb{R}^d)\otimes L^2(\mathbb{R}^d),\) \((R\phi f)(q,p)=f(p)\ell _{\phi }(q).\)
In this section the authors also prove the following theorem and give some corollaries.
Theorem 4. The operator \(R=R_{\phi }^{\ast }U\) maps the space \(L^2(\mathbb{R}^{2d},dq\,dp)\) onto \((L^2\mathbb{R}^d,dq),\) and the restriction \(R\mid_{V_{\phi }(L^2(\mathbb{R}^d))}:V_{\phi }(L^2(\mathbb{R}^d))\rightarrow L^2(\mathbb{R}^d)\) is an isometrical isomorphism given by \[ (RF)(\xi )=\int_{\mathbb{R}^{2d}}F(q,p)\phi (\xi -q)e^{2\pi ip\xi }dq\,dp. \tag{1} \] The adjoint operator \(R^{\ast }=U^{\ast }R_{\phi }:L^2(\mathbb{R}^d)\rightarrow V_{\phi }(L^2(\mathbb{R}^d))\) is an isometrical isomorphism of the space \(L^2(\mathbb{R}^d,dq)\) onto \(V_{\phi }(L^2(\mathbb{R} ^d))\subset L^2(\mathbb{R}^{2d},dq\,dp)\) given by \[ (R^{\ast }f)(q,p)=\int_{\mathbb{R}^d}f(\xi )\overline{\phi (\xi -q)}e^{-2\pi ip\xi}d\xi . \tag{2} \] Let \(S_{0}(\mathbb{R}^d)\) be the Feichtinger algebra and \(\phi \in S_{0}(\mathbb{R}^d)\). The Gabor-Toeplitz localization operator is defined as a map of \(L^2(\mathbb{R}^d)\) to \(L^2(\mathbb{R}^d)\) given by \[ (A_{\alpha }f)(x)=\int_{\mathbb{R}^{2d}}a(q,p)(V_{\phi }f)(q,p)\phi_{q,p}(x)dq\,dp, \] where \(a\) is assumed to be a bounded function defined on the phase space. \( a(q,p)\) is called the symbol of \(A_{\alpha }\) or its Gabor multiplier.
In Section 3, using the representation of the space \(V_{\phi }(L^2(\mathbb{R}^d))\), the authors prove the following important theorem and find some consequences of it.
Theorem 7. Let \(a=a(q)\) be a bounded measurable function. Then the Gabor-Toeplitz localization operator \(A_{\alpha }\) acting on \(V_{\phi}(L^2(\mathbb{R}^d))\) is unitarily equivalent to the multiplication operator \(\gamma _{a}I=RA_{\alpha }R^{\ast }\) acting on \(L^2(\mathbb{R}^d)\) where \(R\) and \(R^{\ast }\) are operators given by \((1)\) and \((2),\) respectively, and the function \(\gamma_{a}\) has the form \[ \gamma _{a}(r)=\int_{\mathbb{R}^d}a(r-s)\left| \ell _{\phi }(s)\right|^2ds,\;r\in \mathbb{R}^d. \]

MSC:

42B35 Function spaces arising in harmonic analysis
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
Full Text: DOI

References:

[1] L. D. Abreu: On the structure of Gabor and super Gabor spaces, Monatsh. Math.; L. D. Abreu: On the structure of Gabor and super Gabor spaces, Monatsh. Math. · Zbl 1206.46029
[2] Abreu, L. D., Sampling and interpolation in Bargmann-Fock spaces of poly-analytic functions, Appl. Comput. Harmon. Anal., 29, 3, 287-302 (2010) · Zbl 1202.31006
[3] L. D. Abreu: Super-wavelets versus poly-Bergman spaces (preprint 2009) arXiv:0909.4830vl.; L. D. Abreu: Super-wavelets versus poly-Bergman spaces (preprint 2009) arXiv:0909.4830vl.
[4] Ascensi, G.; Bruna, J., Model space results for the Gabor and wavelet transforms, IEEE Trans. Inf. Theor., 55, 5, 2250-2259 (2009) · Zbl 1367.94076
[5] Berezin, F. A., Wick and anti-Wick symbols of operators, Mat. Sb. (N.S.), 86, 128, 578-610 (1971)
[6] Berezin, F. A., (Method of Second Quantisation (1988), Nauka: Nauka Moscow)
[7] Coburn, L. A., The Bargmann isometry and Gabor-Daubechies wavelet localization operators, (Borichev, A.; Nikolski, N., Systems, Approximation, Singular Integrals and Related Topics (2001), Birkhäuser: Birkhäuser Basel), 169-178, Operator Theory: Advances and Applications 129 · Zbl 1005.47033
[8] Daubechies, I., Time-frequency localization operators: a geometric phase space approach, IEEE Trans. Inform. Theory, 34, 4, 605-612 (1988) · Zbl 0672.42007
[9] deMari, F.; Feichtinger, H. G.; Nowak, K., Uniform eigenvalue estimates for time-frequency localization operators, J. London Math. Soc., 65, 3, 720-732 (2002) · Zbl 1033.47021
[10] Cordero, E.; Gröchenig, K., Time-frequency analysis of localization operators, J. Funct. Anal., 205, 1, 107-131 (2003) · Zbl 1047.47038
[11] Cordero, E.; Gröchenig, K., Symbolic calculus and Fredholm property for localization operators, J. Fourier Anal. Appl, 12, 4, 370-392 (2006) · Zbl 1104.35079
[12] Cordero, E.; Pilipović, S.; Rodino, L.; Teofanov, N., Localization operators and exponential weights for modulation spaces, Mediterr. J. Math., 2, 4, 381-394 (2005) · Zbl 1171.47303
[13] Cordero, E.; Rodino, L., Wick calculus: A time-frequency approach, Osaka J. Math., 42, 1, 43-63 (2005) · Zbl 1075.35126
[14] Cordero, E.; Gröchenig, K.; Rodino, L., Localization operators and time-frequency analysis, (Chuong, N. M.; etal., Harmonic, Wavelet and p-adic Analysis (2007), World Scientific Publishing: World Scientific Publishing Singapore), 83-109 · Zbl 1149.47035
[15] Feichtinger, H. G.; Nowak, K., A First Survey of Gabor Multipliers, (Feichtinger, H. G.; Strohmer, T., Advances in Gabor Analysis (2002), Birkhäuser: Birkhäuser Boston), 99-128 · Zbl 1032.42033
[16] Feichtinger, H. G.; Nowak, K., A Szegö-type theorem for Gabor-Toeplitz operators, Michigan Math. J., 49, 1, 13-21 (2001) · Zbl 1010.47021
[17] Feichtinger, H. G.; Zimmermann, G., A Banach space of test functions for Gabor analysis, (Feichtinger, H. G.; Strohmer, T., Gabor Analysis and Algorithms: Theory and Applications (1998), Birkhäuser: Birkhäuser Boston), 123-170 · Zbl 0890.42008
[18] Gröchenig, K., (Foundations of Time-Frequency Analysis (2001), Birkhäuser: Birkhäuser Boston) · Zbl 0966.42020
[19] K. Gröchenig and J. Toft: Isomorphism properties of Toeplitz operators in time-frequency analysis, J. Math. Anal.; K. Gröchenig and J. Toft: Isomorphism properties of Toeplitz operators in time-frequency analysis, J. Math. Anal.
[20] Heil, C., An introduction to weighted Wiener amalgams, (Krishna, M.; Radha, R.; Thangavelu, S., Wavelets and their Applications (2003), Allied Publishers: Allied Publishers New Delhi), 183-216
[21] Hutnik, O., On Toeplitz-type operators related to wavelets, Integral Equations Operator Theory, 63, 1, 29-46 (2009) · Zbl 1195.47016
[22] Hutník, O., A note on wavelet subspaces, Monatsh. Math., 160, 1, 59-72 (2010) · Zbl 1193.42125
[23] Vasilevski, N. L., On the structure of Bergman and poly-Bergman spaces, Integral Equations Operator Theory, 33, 471-488 (1999) · Zbl 0931.46023
[24] Vasilevski, N. L., Poly-Fock spaces, Operator Theory Advances and Applications, 111, 371-386 (2000) · Zbl 0959.46016
[25] Vasilevski, N. L., Commutative Algebras of Toeplitz Operators on the Bergman Space, (Operator Theory Advances and Applications, 185 (2008), Birkhäuser: Birkhäuser Basel) · Zbl 0935.47025
[26] Weisz, F., Inversion the short-time Fourier transform using Riemannian sums, J. Fourier Anal. Appl., 13, 3, 357-368 (2007) · Zbl 1138.42015
[27] Weisz, F., Multiplier theorems for the short-time Fourier transform, Integral Equations Operator Theory, 60, 1, 133-149 (2008) · Zbl 1132.42314
[28] Wong, M. W., Wavelets Transforms and Localization Operators, (Operator Theory Advances and Applications, 136 (2002), Birkhäuser: Birkhäuser Basel-Boston-Berlin) · Zbl 1088.47041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.