×

Harmonic coordinates for the nonlinear Finsler Laplacian and some regularity results for Berwald metrics. (English) Zbl 1432.53024

Summary: We prove existence of harmonic coordinates for the nonlinear Laplacian of a Finsler manifold and apply them in a proof of the Myers-Steenrod theorem for Finsler manifolds. Different from the Riemannian case, these coordinates are not suitable for studying optimal regularity of the fundamental tensor, nevertheless, we obtain some partial results in this direction when the Finsler metric is Berwald.

MSC:

53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

References:

[1] Choquet-Bruhat, Y.; Beginnings of the Cauchy problem for Einstein’s field equations; Surveys in Differential Geometry 2015. One Hundred Years of General Relativity: Boston, MA, USA 2015; Volume Volume 20 ,1-16. · Zbl 1339.83006
[2] DeTurck, D.M.; Kazdan, J.L.; Some regularity theorems in Riemannian geometry; Annales Scientifiques de L’École Normale Supérieure: 1981; Volume 14 ,249-260. · Zbl 0486.53014
[3] Müller zum Hagen, H.; On the analyticity of static vacuum solutions of Einstein’s equations; Proc. Camb. Philos. Soc.: 1970; Volume 67 ,415-421. · Zbl 0191.52505
[4] Bers, L.; John, F.; Schechter, M.; ; Partial Differential Equations: New York, NY, USA 1964; Volume Volume III . · Zbl 0126.00207
[5] Liimatainen, T.; Salo, M.; n-harmonic coordinates and the regularity of conformal mappings; Math. Res. Lett.: 2014; Volume 21 ,341-361. · Zbl 1298.30020
[6] Taylor, M.; Existence and regularity of isometries; Trans. Am. Math. Soc.: 2006; Volume 358 ,2415-2423. · Zbl 1156.53310
[7] Douglis, A.; Nirenberg, L.; Interior estimates for elliptic systems of partial differential equations; Commun. Pure Appl. Math.: 1955; Volume 8 ,503-538. · Zbl 0066.08002
[8] Morrey, C.B.; On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior; Am. J. Math.: 1958; Volume 80 ,198-218. · Zbl 0081.09402
[9] Shen, Z.; Landsberg curvature; A Sampler of Riemann-Finsler Geometry: Cambridge, UK 2004; Volume Volume 50 ,303-355. · Zbl 1074.53063
[10] Taylor, M.E.; ; Partial Differential Equations I. Basic Theory: New York, NY, USA 2011; Volume Volume 115 . · Zbl 1206.35002
[11] Ge, Y.; Shen, Z.; Eigenvalues and eigenfunctions of metric measure manifolds; Proc. Lond. Math. Soc. Third Ser.: 2001; Volume 82 ,725-746. · Zbl 1018.58005
[12] Ohta, S.I.; Sturm, K.T.; Heat flow on Finsler manifolds; Commun. Pure Appl. Math.: 2009; Volume 62 ,1386-1433. · Zbl 1176.58012
[13] Besse, A.L.; ; Einstein Manifolds: Berlin, Germany 2008; . · Zbl 1147.53001
[14] Taylor, M.E.; ; Tools for PDE: Providence, RI, USA 2000; Volume Volume 81 . · Zbl 0963.35211
[15] Deng, S.; Hou, Z.; The group of isometries of a Finsler space; Pac. J. Math.: 2002; Volume 207 ,149-155. · Zbl 1055.53055
[16] Aradi, B.; Kertész, D.C.; Isometries, submetries and distance coordinates on Finsler manifolds; Acta Math. Hung.: 2014; Volume 143 ,337-350. · Zbl 1324.53023
[17] Matveev, V.S.; Troyanov, M.; The Myers-Steenrod theorem for Finsler manifolds of low regularity; Proc. Am. Math. Soc.: 2017; Volume 145 ,2699-2712. · Zbl 1362.53083
[18] Shen, Z.; ; Lectures on Finsler Geometry: Singapore 2001; . · Zbl 0974.53002
[19] Szilasi, J.; Lovas, R.L.; Kertész, D.C.; Several ways to a Berwald manifold—And some steps beyond; Extr. Math.: 2011; Volume 26 ,89-130. · Zbl 1260.53036
[20] Bao, D.; Chern, S.S.; Shen, Z.; ; An Introduction to Riemann-Finsler Geometry: New York, NY, USA 2000; . · Zbl 0954.53001
[21] Szabó, Z.I.; Positive definite Berwald spaces. Structure theorems on Berwald spaces; Tensor Soc. Tensor New Ser.: 1981; Volume 35 ,25-39. · Zbl 0464.53025
[22] Crampin, M.; On the construction of Riemannian metrics for Berwald spaces by averaging; Houst. J. Math.: 2014; Volume 40 ,737-750. · Zbl 1311.53016
[23] Vincze, C.; A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds; Acta Mathematica Academiae Paedagogicae Nyíregyháziensis: 2005; Volume 21 ,199-204. · Zbl 1093.53076
[24] Matveev, V.S.; Riemannian metrics having common geodesics with Berwald metrics; Publ. Math. Debr.: 2009; Volume 74 ,405-416. · Zbl 1199.53160
[25] Matveev, V.S.; Rademacher, H.B.; Troyanov, M.; Zeghib, A.; Finsler conformal Lichnerowicz-Obata conjecture; Annales De L’Institut Fourier: 2009; Volume 59 ,937-949. · Zbl 1179.53075
[26] Matveev, V.S.; Troyanov, M.; The Binet-Legendre metric in Finsler geometry; Geom. Topol.: 2012; Volume 16 ,2135-2170. · Zbl 1258.53080
[27] Bao, D.; Lackey, B.; A geometric inequality and a Weitzenböck formula for Finsler surfaces; The Theory of Finslerian Laplacians and Applications: Dordrecht, The Netherlands 1998; Volume Volume 459 ,245-275. · Zbl 0931.53036
[28] Dragomir, S.; Larato, B.; Harmonic functions on Finsler spaces; Univ. Istanbul. Fac. Sci. J. Math.: 1989; Volume 48 ,67-76. · Zbl 0731.53027
[29] Caponio, E.; Javaloyes, M.A.; Masiello, A.; Finsler geodesics in the presence of a convex function and their applications; J. Phys. A: 2010; Volume 43 ,135207. · Zbl 1192.53069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.