×

The Binet-Legendre metric in Finsler geometry. (English) Zbl 1258.53080

To every Finsler norm \(F\), the Binet-Legendre (Riemannian) metric \(g_F\) is associated, which has remarkable natural functorial properties. The transformation \(F \mapsto g_F\) is \(C^0\)-stable and has good smoothness properties, in contrast to previous alternative constructions of this kind. The Riemannian metric \(g_F\) also behaves nicely under conformal or bi-Lipschitz deformation of the Finsler metric \(F\). These properties transform this metric into a powerful tool for solving several Finslerian geometric problems, and for generalizing or providing new and shorter proofs to known results.
In particular, the authors answer a question of M. Matsumoto about local conformal mappings between two Minkowski spaces, and describe all possible conformal self-maps and all self-similarities on a Finsler manifold. As well, further results refer to the classification of all compact conformally flat Finsler manifolds, the solving of a conjecture of S. Deng and Z. Hou on the Berwaldian character of locally symmetric Finsler spaces, and the extension of the classic result of H. C. Wang about the maximal dimension of the isometry groups of Finsler manifolds to manifolds of all dimensions.
It is notable that the employed methods apply even in the absence of the strong convexity assumption – usually assumed in Finsler geometry – and that the smoothness hypothesis can also be replaced by the notion of “partial smoothness” (defined by the authors). Consequently, the obtained results apply to a vast class of Finsler metrics, which are not usually considered in the Finsler literature.

MSC:

53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
30C20 Conformal mappings of special domains
53A30 Conformal differential geometry (MSC2010)
53C35 Differential geometry of symmetric spaces

References:

[1] D V Alekseevskiĭ, Groups of conformal transformations of Riemannian spaces, Mat. Sb. 89(131) (1972) 280, 356 · Zbl 0263.53029 · doi:10.1070/SM1972v018n02ABEH001770
[2] D Bao, On two curvature-driven problems in Riemann-Finsler geometry (editors S V Sabau, H Shimada), Adv. Stud. Pure Math. 48, Math. Soc. Japan (2007) 19 · Zbl 1147.53018
[3] D Bao, S S Chern, Z Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics 200, Springer (2000) · Zbl 0954.53001 · doi:10.1007/978-1-4612-1268-3
[4] V N Berestovskiĭ, Generalized symmetric spaces, Sibirsk. Mat. Zh. 26 (1985) 3, 221
[5] M Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955) 279 · Zbl 0068.36002
[6] H Busemann, The geometry of geodesics, Academic Press (1955) · Zbl 0112.37002
[7] H Busemann, B B Phadke, Two theorems on general symmetric spaces, Pacific J. Math. 92 (1981) 39 · Zbl 0458.53031 · doi:10.2140/pjm.1981.92.39
[8] P Centore, Volume forms in Finsler spaces, Houston J. Math. 25 (1999) 625 · Zbl 0991.53049
[9] S S Chern, Local equivalence and Euclidean connections in Finsler spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A. 5 (1948) 95 · Zbl 0200.00004
[10] S S Chern, Z Shen, Riemann-Finsler geometry, Nankai Tracts in Mathematics 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005) · Zbl 1085.53066
[11] G de Rham, Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv. 26 (1952) 328 · Zbl 0048.15701 · doi:10.1007/BF02564308
[12] S Deng, Z Hou, The group of isometries of a Finsler space, Pacific J. Math. 207 (2002) 149 · Zbl 1055.53055 · doi:10.2140/pjm.2002.207.149
[13] S Deng, Z Hou, Homogeneous Finsler spaces of negative curvature, J. Geom. Phys. 57 (2007) 657 · Zbl 1246.53104 · doi:10.1016/j.geomphys.2006.05.009
[14] S Deng, Z Hou, On symmetric Finsler spaces, Israel J. Math. 162 (2007) 197 · Zbl 1141.53071 · doi:10.1007/s11856-007-0095-6
[15] J Ferrand, The action of conformal transformations on a Riemannian manifold, Math. Ann. 304 (1996) 277 · Zbl 0866.53027 · doi:10.1007/BF01446294
[16] P Foulon, Locally symmetric Finsler spaces in negative curvature, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1127 · Zbl 0882.53051 · doi:10.1016/S0764-4442(97)87899-8
[17] D Fried, Closed similarity manifolds, Comment. Math. Helv. 55 (1980) 576 · Zbl 0455.57005 · doi:10.1007/BF02566707
[18] P Hartman, Ordinary differential equations, John Wiley & Sons (1964) · Zbl 0125.32102
[19] E Heil, D Laugwitz, Finsler spaces with similarity are Minkowski spaces, Tensor 28 (1974) 59 · Zbl 0251.53046
[20] S Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics 80, Academic Press [Harcourt Brace Jovanovich Publishers] (1978) · Zbl 0451.53038
[21] S Ishihara, Homogeneous Riemannian spaces of four dimensions, J. Math. Soc. Japan 7 (1955) 345 · Zbl 0067.39602 · doi:10.2969/jmsj/00740345
[22] C W Kim, Locally symmetric positively curved Finsler spaces, Arch. Math. (Basel) 88 (2007) 378 · Zbl 1126.53050 · doi:10.1007/s00013-006-2010-5
[23] S Kobayashi, T Nagano, Riemannian manifolds with abundant isometries (editors M Obata, S Kobayashi), Kinokuniya (1972) 195 · Zbl 0251.53036
[24] N H Kuiper, Compact spaces with a local structure determined by the group of similarity transformations in \(E^n\), Nederl. Akad. Wetensch., Proc. 53 (1950) 1178 · Zbl 0041.52202
[25] R S Kulkarni, Conformally flat manifolds, Proc. Nat. Acad. Sci. U.S.A. 69 (1972) 2675 · Zbl 0238.53026 · doi:10.1073/pnas.69.9.2675
[26] A M Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, Volume 1, Huzard-Courcier (1825)
[27] J Liouville, Extension au cas des trois dimensions de la question du tracé géographique, Applications de l’analyse à la géométrie (1850) 609
[28] J Liouville, Théorème sur l’équation \(dx^2+dy^2+dz^2 = \lambda (d\alpha^2 + d\beta^2 + d\gamma^2)\), J. Math. Pures et Appliquées (1850)
[29] R L Lovas, J Szilasi, Homotheties of Finsler manifolds, SUT J. Math. 46 (2010) 23 · Zbl 1218.53077
[30] E Lutwak, D Yang, G Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000) 375 · Zbl 0974.52008 · doi:10.1215/S0012-7094-00-10432-2
[31] E Lutwak, D Yang, G Zhang, \(L_p\) John ellipsoids, Proc. London Math. Soc. 90 (2005) 497 · Zbl 1074.52005 · doi:10.1112/S0024611504014996
[32] M Matsumoto, Conformally Berwald and conformally flat Finsler spaces, Publ. Math. Debrecen 58 (2001) 275 · Zbl 0998.53015
[33] S Matsumoto, Foundations of flat conformal structure (editors Y Matsumoto, S Morita), Adv. Stud. Pure Math. 20, Kinokuniya (1992) 167 · Zbl 0816.53020
[34] V S Matveev, Riemannian metrics having common geodesics with Berwald metrics, Publ. Math. Debrecen 74 (2009) 405 · Zbl 1199.53160
[35] V S Matveev, H B Rademacher, M Troyanov, A Zeghib, Finsler conformal Lichnerowicz-Obata conjecture, Ann. Inst. Fourier (Grenoble) 59 (2009) 937 · Zbl 1179.53075 · doi:10.5802/aif.2452
[36] V D Milman, A Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed \(n\)-dimensional space (editors J Lindenstrauss, V D Milman), Lecture Notes in Math. 1376, Springer (1989) 64 · Zbl 0679.46012 · doi:10.1007/BFb0090049
[37] D Montgomery, H Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454 · Zbl 0063.04077 · doi:10.2307/1968975
[38] P Planche, Géométrie de Finsler sur les espaces symétriques, Thèse Genève (1995) · Zbl 0874.53038
[39] P Planche, Structures de Finsler invariantes sur les espaces symétriques, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 1455 · Zbl 0842.53034
[40] R Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464 · Zbl 0835.53015 · doi:10.1007/BF01895676
[41] R Schoen, S T Yau, Conformally flat manifolds, Kleinian groups and scalar curvature, Invent. Math. 92 (1988) 47 · Zbl 0658.53038 · doi:10.1007/BF01393992
[42] J Simons, On the transitivity of holonomy systems, Ann. of Math. 76 (1962) 213 · Zbl 0106.15201 · doi:10.2307/1970273
[43] Z I Szabó, Berwald metrics constructed by Chevalley’s polynomials
[44] Z I Szabó, Positive definite Berwald spaces, Structure theorems on Berwald spaces, Tensor 35 (1981) 25 · Zbl 0464.53025
[45] I Vaisman, C Reischer, Local similarity manifolds, Ann. Mat. Pura Appl. 135 (1983) 279 · Zbl 0538.53025 · doi:10.1007/BF01781072
[46] C Vincze, A new proof of Szabó’s theorem on the Riemann-metrizability of Berwald manifolds, Acta Math. Acad. Paedagog. Nyházi. 21 (2005) 199 · Zbl 1093.53076
[47] H C Wang, On Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22 (1947) 5 · Zbl 0029.16604 · doi:10.1112/jlms/s1-22.1.5
[48] K Yano, On \(n\)-dimensional Riemannian spaces admitting a group of motions of order \(n(n-1)/2+1\), Trans. Amer. Math. Soc. 74 (1953) 260 · Zbl 0051.39303 · doi:10.2307/1990882
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.