×

On Coron’s problem for weakly coupled elliptic systems. (English) Zbl 1390.35068

The paper deals with the critical weakly coupled elliptic system \[ \begin{cases} -\Delta u_{i}= \mu_i|u_i|^{2^*-2}u_i+\sum_{j\neq i}\beta_{ij}|u_j|^{\frac{2}{2}}|u_i|^{\frac{2^*-4}{2}}u_i &\quad \text{ in }\;\Omega_\epsilon,\\ u_i=0 &\quad \text{ on }\;\partial\Omega_\epsilon,\\ i= 1,\dots,m, \end{cases} \] where \(\Omega_\epsilon\subset \mathbb{R}^N\), \(N=3,4\), is a domain with small shrinking holes as \(\epsilon \to 0\).
The authors derive existence of positive solutions of two different types: either each density concentrates around a different hole, or groups of components exist such that all the components within a single group concentrate around the same point, and different groups concentrate around different points. The technique of proofs rely on a perturbation approach based on the Lyapunov-Schmidt finite-dimensional reduction.

MSC:

35J15 Second-order elliptic equations
35J20 Variational methods for second-order elliptic equations
35J50 Variational methods for elliptic systems

References:

[1] N.Akhmediev and A.Ankiewicz, ‘Partially coherent solitons on a finite background’, Phys. Rev. Lett.82 (1999) 2661-2664.
[2] A.Bahri and J.‐M.Coron, ‘On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain’, Comm. Pure Appl. Math.41 (1988) 253-294. · Zbl 0649.35033
[3] T.Bartsch, ‘Bifurcation in a multicomponent system of nonlinear Schrödinger equations’, J. Fixed Point Theory Appl.13 (2013) 37-50. · Zbl 1281.35004
[4] G.Bianchi and H.Egnell, ‘A note on the sobolev inequality’, J. Funct. Anal.100 (1991) 18-24. · Zbl 0755.46014
[5] H.Brézis and L.Nirenberg, ‘Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents’, Comm. Pure Appl. Math.36 (1983) 437-477. · Zbl 0541.35029
[6] J.Byeon, Y.Sato and Z.‐Q.Wang, ‘Pattern formation via mixed attractive and repulsive interactions for nonlinear Schrödinger systems’, J. Math. Pures Appl. (9) 106 (2016) 477-511. · Zbl 1345.35032
[7] L. A.Caffarelli, B.Gidas and J.Spruck, ‘Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth’, Comm. Pure Appl. Math.42 (1989) 271-297. · Zbl 0702.35085
[8] Z.Chen and C.‐S.Lin, ‘Asymptotic behavior of least energy solutions for a critical elliptic system’, Int. Math. Res. Not. IMRN2015 (2015) 11045-11082. · Zbl 1342.35110
[9] Z.Chen and W.Zou, ‘Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent’, Arch. Ration. Mech. Anal.205 (2012) 515-551. · Zbl 1256.35132
[10] Z.Chen and W.Zou, ‘Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case’, Calc. Var. Partial Differential Equations52 (2015) 423-467. · Zbl 1312.35158
[11] M.Clapp, M.Musso and A.Pistoia, ‘Multipeak solutions to the Bahri‐Coron problem in domains with a shrinking hole’, J. Funct. Anal.256 (2009) 275-306. · Zbl 1236.35044
[12] M.Clapp and T.Weth, ‘Two solutions of the Bahri‐Coron problem in punctured domains via the fixed point transfer’, Commun. Contemp. Math.10 (2008) 81-101. · Zbl 1157.35048
[13] J.‐M.Coron, ‘Topologie et cas limite des injections de Sobolev’, C. R. Acad. Sci. Paris Sér. I Math.299 (1984) 209-212. · Zbl 0569.35032
[14] Y.Ge, M.Musso and A.Pistoia, ‘Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non‐symmetric domains’, Comm. Partial Differential Equations35 (2010) 1419-1457. · Zbl 1205.35096
[15] Y.Guo, B.Li and J.Wei, ‘Entire nonradial solutions for non‐cooperative coupled elliptic system with critical exponents in \(\mathbb{R}^3\)’, J. Differential Equations256 (2014) 3463-3495. · Zbl 1288.35232
[16] A.Iacopetti and G.Vaira, ‘Sign‐changing blowing‐up solutions for the Brezis‐Nirenberg problem in dimensions four and five’, Ann. Sc. Norm. Super. Pisa Cl. Sci., https://doi.org/10.2422/2036‐2145.201602_003, in press. · Zbl 1394.35143 · doi:10.2422/2036‐2145.201602_003
[17] J. L.Kazdan and F. W.Warner, ‘Remarks on some quasilinear elliptic equations’, Comm. Pure Appl. Math.28 (1975) 567-597. · Zbl 0325.35038
[18] G.Li, S.Yan and J.Yang, ‘An elliptic problem with critical growth in domains with shrinking holes’, J. Differential Equations198 (2004) 275-300. · Zbl 1086.35046
[19] M.Musso and A.Pistoia, ‘Persistence of Coron’s solutions in nearly critical problems’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007) 331-357. · Zbl 1147.35041
[20] M.Musso and A.Pistoia, ‘Sign changing solutions to a Bahri‐Coron’s problem in pierced domains’, Discrete Contin. Dyn. Syst.21 (2008) 295-306. · Zbl 1157.35049
[21] M.Musso and A.Pistoia, ‘Erratum to: Persistence of Coron’s solutions in nearly critical problems’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009) 207-209. · Zbl 1175.35068
[22] A.Pistoia, ‘The Ljapunov‐Schmidt reduction for some critical problems’, Concentration analysis and applications to PDE, Trends in Mathematics (Springer, Basel, 2013) 69-83. · Zbl 1283.35022
[23] A.Pistoia and H.Tavares, ‘Spiked solutions for Schrödinger systems with Sobolev critical expnent: the cases of competitive and weakly cooperative interactions’, J. Fixed Point Theory Appl.19 (2017) 407-446. · Zbl 1368.35090
[24] A.Pistoia and N.Soave, ‘On Coron’s problem of weakly coupled elliptic systems’, Preprint, 2016, arXiv:1610.07762.
[25] O.Rey, ‘Sur un problème variationnel non compact: l’effet de petits trous dans le domaine’, C. R. Acad. Sci. Paris Sér. I Math.308 (1989) 349-352. · Zbl 0686.35047
[26] Y.Sato and Z.‐Q.Wang, ‘Least energy solutions for nonlinear Schrödinger systems with mixed attractive and repulsive couplings’, Adv. Nonlinear Stud.15 (2015) 1-22. · Zbl 1316.35269
[27] Y.Sato and Z.‐Q.Wang, ‘Multiple positive solutions for Schrödinger systems with mixed couplings’, Calc. Var. Partial Differential Equations54 (2015) 1373-1392. · Zbl 1326.35131
[28] B.Sirakov, ‘Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbb{R}^n\)’, Comm. Math. Phys.271 (2007) 199-221. · Zbl 1147.35098
[29] N.Soave, ‘On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition’, Calc. Var. Partial Differential Equations53 (2015) 689-718. · Zbl 1323.35166
[30] N.Soave and H.Tavares, ‘New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms’, J. Differential Equations261 (2016) 505-537. · Zbl 1337.35049
[31] E.Timmermans, ‘Phase separation of Bose‐Einstein condensates’, Phys. Rev. Lett.81 (1998) 5718-5721.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.