×

Supported blow-up and prescribed scalar curvature on \(S^n\). (English) Zbl 1226.53040

Mem. Am. Math. Soc. 1002, v, 99 p. (2011).
This memoir consists of nine chapters. It deals with the problem of finding conditions sufficient for a given scalar function on a unit sphere \(S^n\) to be the curvature of a conformal metric on \(S^n\). There is a large bibliography of the subject.
Chapter 1, Introduction, contains a discussion of the problem and the statement of the main theorem. The remaining eight chapters build up the proof of the main theorem.
The formulation of the main theorem requires quite a few definitions and for this reason is not given here. The author uses blow-up sequences, that he calls supported, for a proof of the existence of positive \(C^2\) solutions to the basic (known) nonlinear partial differential equation, to which the problem is reduced.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
Full Text: DOI

References:

[1] Antonio Ambrosetti, Yan Yan Li, and Andrea Malchiodi, A note on the scalar curvature problem in the presence of symmetries, Ricerche Mat. 49 (2000), no. suppl., 169-176. Contributions in honor of the memory of Ennio De Giorgi (Italian). · Zbl 1008.53038
[2] Antonio Ambrosetti and Andrea Malchiodi, Perturbation methods and semilinear elliptic problems on \({\mathbf R}^n\), Progress in Mathematics, vol. 240, Birkhäuser Verlag, Basel, 2006. · Zbl 1115.35004
[3] Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. · Zbl 0896.53003
[4] Sheldon Axler, Paul Bourdon, and Wade Ramey, Bôcher’s theorem, Amer. Math. Monthly 99 (1992), no. 1, 51-55. · Zbl 0758.31002 · doi:10.2307/2324549
[5] Abbas Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension, Duke Math. J. 81 (1996), no. 2, 323-466. A celebration of John F. Nash, Jr. · Zbl 0856.53028 · doi:10.1215/S0012-7094-96-08116-8
[6] A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal. 95 (1991), no. 1, 106-172. · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[7] Mohamed Ben Ayed, Hichem Chtioui, and Mokhles Hammami, The scalar-curvature problem on higher-dimensional spheres, Duke Math. J. 93 (1998), no. 2, 379-424. · Zbl 0977.53035 · doi:10.1215/S0012-7094-98-09313-9
[8] Gabriele Bianchi, The scalar curvature equation on \(\mathbf R^n\) and \(S^n\), Adv. Differential Equations 1 (1996), no. 5, 857-880. · Zbl 0865.35044
[9] Gabriele Bianchi, Non-existence and symmetry of solutions to the scalar curvature equation, Comm. Partial Differential Equations 21 (1996), no. 1-2, 229-234. · Zbl 0844.35025 · doi:10.1080/03605309608821182
[10] Gabriele Bianchi and Henrik Egnell, An ODE approach to the equation \(\Delta u+Ku^{(n+2)/(n-2)}=0\), in \({\mathbf R}^n\), Math. Z. 210 (1992), no. 1, 137-166. · Zbl 0759.35019 · doi:10.1007/BF02571788
[11] Jean-Pierre Bourguignon and Jean-Pierre Ezin, Scalar curvature functions in a conformal class of metrics and conformal transformations, Trans. Amer. Math. Soc. 301 (1987), no. 2, 723-736. · Zbl 0622.53023 · doi:10.1090/S0002-9947-1987-0882712-7
[12] Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297. · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[13] Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang, The scalar curvature equation on \(2\)- and \(3\)-spheres, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 205-229. · Zbl 0822.35043 · doi:10.1007/BF01191617
[14] Sun-Yung A. Chang and Paul C. Yang, Conformal deformation of metrics on \(S^2\), J. Differential Geom. 27 (1988), no. 2, 259-296. · Zbl 0649.53022
[15] A. S.-Y. Chang & P. Yang, A perturbation result in prescribing scalar curvature on \(S^n\), Duke Math. J. 64 (1991), 27- 69. Addendum: 71 (1993), 333- 335. · Zbl 0739.53027
[16] Chiun-Chuan Chen and Chang-Shou Lin, Estimates of the conformal scalar curvature equation via the method of moving planes, Comm. Pure Appl. Math. 50 (1997), no. 10, 971-1017. · Zbl 0958.35013 · doi:10.1002/(SICI)1097-0312(199710)50:10<971::AID-CPA2>3.0.CO;2-D
[17] Chiun-Chuan Chen and Chang-Shou Lin, Estimate of the conformal scalar curvature equation via the method of moving planes. II, J. Differential Geom. 49 (1998), no. 1, 115-178. · Zbl 0961.35047
[18] Chiun-Chuan Chen and Chang-Shou Lin, On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann. 313 (1999), no. 2, 229-245. · Zbl 0927.35034 · doi:10.1007/s002080050259
[19] Chiun-Chuan Chen and Chang-Shou Lin, On axisymmetric solutions of the conformal scalar curvature equation on \(S^n\), Adv. Differential Equations 5 (2000), no. 1-3, 121-146. · Zbl 1031.53063
[20] Chiun-Chuan Chen and Chang-Shou Lin, Prescribing scalar curvature on \(S^N\). I. A priori estimates, J. Differential Geom. 57 (2001), no. 1, 67-171. · Zbl 1043.53028
[21] Wen Xiong Chen and Congming Li, A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math. 48 (1995), no. 6, 657-667. · Zbl 0830.35034 · doi:10.1002/cpa.3160480606
[22] Wenxiong Chen and Congming Li, A priori estimates for prescribing scalar curvature equations, Ann. of Math. (2) 145 (1997), no. 3, 547-564. · Zbl 0877.35036 · doi:10.2307/2951844
[23] Wenxiong Chen and Congming Li, Prescribing scalar curvature on \(S^n\), Pacific J. Math. 199 (2001), no. 1, 61-78. · Zbl 1060.53047 · doi:10.2140/pjm.2001.199.61
[24] Ka Luen Cheung and Man Chun Leung, Asymptotic behavior of positive solutions of the equation \(\Delta u+Ku^{\frac {n+2}{n-2}}=0\) in \(\mathbb R^n\) and positive scalar curvature, Discrete Contin. Dynam. Systems Added Volume (2001), 109-120. Dynamical systems and differential equations (Kennesaw, GA, 2000). · Zbl 1301.35037
[25] Wei Yue Ding and Wei-Ming Ni, On the elliptic equation \(\Delta u+Ku^{(n+2)/(n-2)}=0\) and related topics, Duke Math. J. 52 (1985), no. 2, 485-506. · Zbl 0592.35048 · doi:10.1215/S0012-7094-85-05224-X
[26] José F. Escobar and Richard M. Schoen, Conformal metrics with prescribed scalar curvature, Invent. Math. 86 (1986), no. 2, 243-254. · Zbl 0628.53041 · doi:10.1007/BF01389071
[27] Yuxin Ge, Ruihua Jing, and Frank Pacard, Bubble towers for supercritical semilinear elliptic equations, J. Funct. Anal. 221 (2005), no. 2, 251-302. · Zbl 1129.35379 · doi:10.1016/j.jfa.2004.09.011
[28] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209-243. · Zbl 0425.35020
[29] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbf R}^{n}\), Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369-402. · Zbl 0469.35052
[30] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[31] Jerry L. Kazdan and F. W. Warner, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Ann. of Math. (2) 101 (1975), 317-331. · Zbl 0297.53020
[32] Nick Korevaar, Rafe Mazzeo, Frank Pacard, and Richard Schoen, Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math. 135 (1999), no. 2, 233-272. · Zbl 0958.53032 · doi:10.1007/s002220050285
[33] John M. Lee, Riemannian manifolds, Graduate Texts in Mathematics, vol. 176, Springer-Verlag, New York, 1997. An introduction to curvature. · Zbl 0905.53001
[34] John M. Lee and Thomas H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91. · Zbl 0633.53062 · doi:10.1090/S0273-0979-1987-15514-5
[35] Man Chun Leung, Conformal scalar curvature equations on complete manifolds, Comm. Partial Differential Equations 20 (1995), no. 3-4, 367-417. · Zbl 0833.53038 · doi:10.1080/03605309508821100
[36] Man Chun Leung, Asymptotic behavior of positive solutions of the equation \(\Delta _g u+Ku^p=0\) in a complete Riemannian manifold and positive scalar curvature, Comm. Partial Differential Equations 24 (1999), no. 3-4, 425-462. · Zbl 0939.58024 · doi:10.1080/03605309908821430
[37] Man Chun Leung, Exotic solutions of the conformal scalar curvature equation in \(\mathbb R^n\), Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 3, 297-307 (English, with English and French summaries). · Zbl 0986.35033 · doi:10.1016/S0294-1449(01)00067-1
[38] Man Chun Leung, Blow-up solutions of nonlinear elliptic equations in \(\mathbb R^n\) with critical exponent, Math. Ann. 327 (2003), no. 4, 723-744. · Zbl 1080.35023 · doi:10.1007/s00208-003-0468-z
[39] M.-C. Leung, Perspectives on bubble analysis for critically nonlinear PDEs, A Festschrift in Honour of Professor M.-K. Siu, pp. 215-268, Hong Kong University, To Appear.
[40] Yan Yan Li, Prescribing scalar curvature on \(S^n\) and related problems. I, J. Differential Equations 120 (1995), no. 2, 319-410. · Zbl 0827.53039 · doi:10.1006/jdeq.1995.1115
[41] Yanyan Li, Prescribing scalar curvature on \(S^n\) and related problems. II. Existence and compactness, Comm. Pure Appl. Math. 49 (1996), no. 6, 541-597. · Zbl 0849.53031 · doi:10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
[42] Chang-Shou Lin, Estimates of the scalar curvature equation via the method of moving planes. III, Comm. Pure Appl. Math. 53 (2000), no. 5, 611-646. · Zbl 1035.53052 · doi:10.1002/(SICI)1097-0312(200005)53:5<611::AID-CPA4>3.0.CO;2-N
[43] Andrea Malchiodi, The scalar curvature problem on \(S^n\): an approach via Morse theory, Calc. Var. Partial Differential Equations 14 (2002), no. 4, 429-445. · Zbl 1012.53035 · doi:10.1007/s005260100110
[44] Matthias Schneider, The scalar curvature equation on \(S^3\), J. Funct. Anal. 257 (2009), no. 9, 2840-2863. · Zbl 1201.53042 · doi:10.1016/j.jfa.2009.06.013
[45] Richard M. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), no. 3, 317-392. · Zbl 0674.35027 · doi:10.1002/cpa.3160410305
[46] R. Schoen, Courses at Stanford University (1988) and New York University (1989), Unpublished.
[47] R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; Preface translated from the Chinese by Kaising Tso. · Zbl 0830.53001
[48] Richard Schoen and Dong Zhang, Prescribed scalar curvature on the \(n\)-sphere, Calc. Var. Partial Differential Equations 4 (1996), no. 1, 1-25. · Zbl 0843.53037 · doi:10.1007/BF01322307
[49] Michael Struwe, A flow approach to Nirenberg’s problem, Duke Math. J. 128 (2005), no. 1, 19-64. · Zbl 1087.53034 · doi:10.1215/S0012-7094-04-12812-X
[50] Steven D. Taliaferro, Existence of large singular solutions of conformal scalar curvature equations in \(S^n\), J. Funct. Anal. 224 (2005), no. 1, 192-216. · Zbl 1128.35340 · doi:10.1016/j.jfa.2004.12.002
[51] Steven D. Taliaferro and Lei Zhang, Asymptotic symmetries for conformal scalar curvature equations with singularity, Calc. Var. Partial Differential Equations 26 (2006), no. 4, 401-428. · Zbl 1175.35055 · doi:10.1007/s00526-005-0002-0
[52] Hidehiko Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37. · Zbl 0096.37201
[53] Shusen Yan, Concentration of solutions for the scalar curvature equation on \(\mathbf R^N\), J. Differential Equations 163 (2000), no. 2, 239-264. · Zbl 0954.35058 · doi:10.1006/jdeq.1999.3718
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.