×

Prescribing scalar curvature on \(S^ n\) and related problems. II: Existence and compactness. (English) Zbl 0849.53031

This is a sequel to Part I [J. Differ. Equations 120, No. 2, 319-410 (1995; Zbl 0827.53039)] which studies the prescribing scalar curvature problem on \(S^n\). First we present some existence and compactness results for \(n= 4\). The existence result extends those of A. Bahri and J. M. Coron [J. Funct. Anal. 95, No. 1, 106-172 (1991; Zbl 0722.53032)], M. Benayed, Y. Chen, H. Chtioui and M. Hammami [Duke Math. J. 84, No. 3, 633-677 (1996)] and D. Zhang [New results on geometric variational problems, Thesis, Stanford Univ. (1990)]. The compactness results are new and optimal. In addition, we give a counting formula of all solutions which, as a consequence, gives a complete description of when and where blow-ups occur. It follows from our results that solutions to the problem may have multiple blow-up points. This phenomenon is new and very different from the lower-dimensional cases \(n= 2,3\).
Next we study the problem for \(n\geq 3\). Some existence and compactness results have been given in [the author, loc. cit.] when the order of flatness at critical points of the prescribed scalar curvature functions \(K(x)\) is \(\beta\in (n- 2, n)\). The key point there is that for the class of \(K\) mentioned above we have completed \(L^\infty\) a priori estimates for solutions of the prescribing scalar curvature problem. Here we demonstrate that when the order of flatness at critical points of \(K(x)\) is \(\beta= n- 2\), the \(L^\infty\) estimates for solutions fail in general. In fact, two or more blow-up points occur.
On the other hand, we provide some existence and compactness results when the order of flatness at critical points of \(K(x)\) is \(\beta\in [n- 2, n)\). With this result, we can easily deduce that \(C^\infty\) scalar curvature functions are dense in the \(C^{1, \alpha}\) \((0< \alpha< 1)\) norm among all positive functions. With respect to the \(C^2\) norm, such a density result is false in general.
We also give a simpler proof to a Sobolev-Aubin type inequality established in [S.-Y. A. Chang and P. C. Yang, Duke Math. J. 64, No. 1, 27-69 (1991; Zbl 0739.53027)].
Some of the results in this paper as well as that of Part I have been announced in [C. R. Acad. Sci. Paris, Sér. I 317, No. 2, 159-164 (1993; Zbl 0787.53029)].

MSC:

53C20 Global Riemannian geometry, including pinching
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] Aubin, Meilleures constantes dans le thérèm d’inclusion de Sobolev st un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32 pp 149– (1979) · Zbl 0411.46019 · doi:10.1016/0022-1236(79)90052-1
[2] Aubin, Monge-Ampère Equations (1982) · doi:10.1007/978-1-4612-5734-9
[3] Bahri, Critical Points at Infinity in Some Variational Problems (1989) · Zbl 0676.58021
[4] Bahri, The scalar-curvature problem on standard three-dimensional sphere, J. Funct. Anal. 95 pp 106– (1991) · Zbl 0722.53032 · doi:10.1016/0022-1236(91)90026-2
[5] Bahri, On a variational problem with lack of compactness: The topo-logical effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3 pp 67– (1995) · Zbl 0814.35032 · doi:10.1007/BF01190892
[6] Also in the preprint series of Centre de Mathématiques 1991
[7] Benayed, On the prescribed scalar curvature problem on four-manifolds, Duke Math. J.
[8] Besse, Einstein Manifolds (1987) · doi:10.1007/978-3-540-74311-8
[9] Bianchi, An ODE approach to the equation {\(\Delta\)}u + Ku n+2/n-2 = 0, in Rn, Math. Z. 210 pp 137– (1992) · Zbl 0759.35019 · doi:10.1007/BF02571788
[10] Bourguignon, Scalar curvature functions in a conformal class of metric and conformal transformations, Tran. Amer. Math. Soc. 301 pp 723– (1987) · doi:10.1090/S0002-9947-1987-0882712-7
[11] Brezis, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 pp 437– (1983) · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[12] Caffarelli, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 pp 271– (1989) · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[13] Chang, On Nirenberg’s problem, Internat, J. Math. 4 pp 35– (1993) · Zbl 0786.58010
[14] Chang, The scalar curvature equation on 2- and 3-sphere, Calc. Var. Partial Differential Equations 1 pp 205– (1993) · Zbl 0822.35043 · doi:10.1007/BF01191617
[15] Chang, Prescribing Gaussian curvature on S2, Acta Math. 159 pp 215– (1987) · Zbl 0636.53053 · doi:10.1007/BF02392560
[16] Chang, Conformal deformations of metrics on S2, J. Differential Geom. 27 pp 256– (1988) · Zbl 0649.53022 · doi:10.4310/jdg/1214441783
[17] Chang, A perturbation result in prescribing scalar curvature on Sn, Duke Math. J. 64 pp 27– (1991) · Zbl 0739.53027 · doi:10.1215/S0012-7094-91-06402-1
[18] Chen, Scalar curvature on S2, Trans. Amer. Math. Soc. 303 pp 365– (1987)
[19] Chen, A necessary and sufficient condition for the Nirenberg problem, Comm. Pure Appl. Math. 48 pp 657– (1995) · Zbl 0830.35034 · doi:10.1002/cpa.3160480606
[20] Cheng, Conformal metrics with prescribed Gaussian curvature on S2, Trans. Amer. Math. Soc. 336 pp 219– (1993)
[21] Ding, On the elliptic equation {\(\Delta\)}u + Ku n+2/n-2 = 0 and related topics, Duke Math. J. 52 pp 485– (1985) · Zbl 0592.35048 · doi:10.1215/S0012-7094-85-05224-X
[22] Escobar, Conformal metrics with prescribed scalar curvature, Invent. Math. 86 pp 243– (1986) · Zbl 0628.53041 · doi:10.1007/BF01389071
[23] Gidas, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 pp 525– (1981) · Zbl 0465.35003 · doi:10.1002/cpa.3160340406
[24] Gilbarg, Elliptic Partial Differential Equations (1983)
[25] Han, Prescribing Gaussian curvature on S2, Duke Math. J. 61 pp 679– (1990) · Zbl 0715.53034 · doi:10.1215/S0012-7094-90-06125-3
[26] Han, A note on the Kazdan-Warner type condition, Ann. Inst. H. Poincaré Anal. Non Linéaire
[27] Hebey, Meilleures constantes dans le théorème d’inclusion de Sobolev et multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J. 41 pp 377– (1992) · Zbl 0764.53029 · doi:10.1512/iumj.1992.41.41021
[28] Kazdan, Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature, Ann. Math. 101 pp 317– (1975) · Zbl 0297.53020 · doi:10.2307/1970993
[29] Li, On -{\(\Delta\)}u = K(x)u5 in R3, Comm. Pure Appl. Math. 46 pp 303– (1993) · Zbl 0799.35068 · doi:10.1002/cpa.3160460302
[30] Li, Prescribing scalar curvature on Sn and related problems, C. R. Acad. Sci. Paris Sér. I Math. 317 pp 159– (1993)
[31] Li, Prescribing scalar curvature on Sn and related problems, Part I, J. Differential Equations 120 pp 319– (1995) · Zbl 0827.53039 · doi:10.1006/jdeq.1995.1115
[32] Moser, Dynamical Systems (Proc. Sympos., Univ. Bahia, Salvador) pp 273– (1973)
[33] Nirenberg, Topics in Nonlinear Functional Analysis (1974)
[34] Obata, The conjecture on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 pp 247– (1971) · Zbl 0236.53042 · doi:10.4310/jdg/1214430407
[35] Onofri, On the positivity of the effective action in a theory of random surface, Comm. Math. Phys. 86 pp 321– (1982) · Zbl 0506.47031 · doi:10.1007/BF01212171
[36] Pohozaev, Eigenfunctions of the equation {\(\Delta\)}u + {\(\lambda\)}f(u) = 0, Soviet Math. Dokl. 6 pp 1408– (1965)
[37] Schoen, Topics in Calculus of Variations pp 120– (1989) · doi:10.1007/BFb0089180
[38] Schoen, Pitman Monographs Surveys Pure Appl. Math. 52, in: Differential Geometry pp 311– (1991)
[39] Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 pp 265– (1968) · Zbl 0159.23801
[40] Zhang , D. New Results on Geometric Variational Problems 1990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.