×

A class of inverse curvature flows in \(\mathbb{R}^{n+1}\). II. (English) Zbl 1456.53076

Summary: : We consider closed, star-shaped, admissible hypersurfaces in \(\mathbb{R}^{n+1}\) expanding along the flow \(\dot{X}=|X|^{\alpha-1}F^{-\beta}\), \(\alpha\leq 1\), \(\beta> 0\), and prove that for the case \(\alpha\leq 1,\beta> 0, \alpha+\beta\leq 2\), this evolution exists for all the time and the evolving hypersurfaces converge smoothly to a round sphere after rescaling. Besides, for the case \(\alpha\leq 1, \alpha+\beta> 2\), if furthermore the initial closed hypersurface is strictly convex, then the strict convexity is preserved during the evolution process and the flow blows up at finite time.

MSC:

53E10 Flows related to mean curvature
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
35K96 Parabolic Monge-Ampère equations
Full Text: DOI

References:

[1] S. Brendle, P.-K. Hung, and M.-T. Wang,A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm. Pure Appl. Math.69(2016), no. 1, 124-144.https://doi.org/10.1002/cpa.21556 · Zbl 1331.53078
[2] L. Caffarelli, L. Nirenberg, J. Spruck,The Dirichlet problem for nonlinear second order elliptic equations, III;Functions of the eigenvalue of the Hessian, Acta. Math.155 (1985), 261-301. · Zbl 0654.35031
[3] H. Chen, Q. Li,TheLp-dual Minkowski problem and related parabolic flows, Preprint. · Zbl 1469.35115
[4] L. Chen and J. Mao,Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold, J. Geom. Anal.28(2018), no. 2, 921-949.https://doi.org/10.1007/s12220017-9848-6 · Zbl 1393.53056
[5] L. Chen, J. Mao, Q. Tu, and D. Wu,Asymptotic convergence for a class of inverse mean curvature flows inRn+1, Proc. Amer. Math. Soc.148(2020), no. 1, 379-392. https://doi.org/10.1090/proc/14686 · Zbl 1508.53013
[6] K. Ecker,Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications,57, Birkh¨auser Boston, Inc., Boston, MA, 2004. https://doi.org/10.1007/978-0-8176-8210-1 · Zbl 1058.53054
[7] Y. Ge, G. Wang, and J. Wu,Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II, J. Differential Geom.98(2014), no. 2, 237-260.http://projecteuclid.org/ euclid.jdg/1406552250 · Zbl 1301.53077
[8] Y. Ge, G. Wang, J. Wu, and C. Xia,A Penrose inequality for graphs over Kottler space, Calc. Var. Partial Differential Equations52(2015), no. 3-4, 755-782.https: //doi.org/10.1007/s00526-014-0732-y · Zbl 1308.83093
[9] C. Gerhardt,Flow of nonconvex hypersurfaces into spheres, J. Differential Geom.32 (1990), no. 1, 299-314.http://projecteuclid.org/euclid.jdg/1214445048 · Zbl 0708.53045
[10] ,Curvature problems, Series in Geometry and Topology,39, International Press, Somerville, MA, 2006. · Zbl 1131.53001
[11] ,Non-scale-invariant inverse curvature flows in Euclidean space, Calc. Var. Partial Differential Equations49(2014), no. 1-2, 471-489.https://doi.org/10.1007/ s00526-012-0589-x · Zbl 1284.53062
[12] G. Huisken and T. Ilmanen,The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differential Geom.59(2001), no. 3, 353-437.http://projecteuclid. org/euclid.jdg/1090349447 · Zbl 1055.53052
[13] ,Higher regularity of the inverse mean curvature flow, J. Differential Geom.80 (2008), no. 3, 433-451.http://projecteuclid.org/euclid.jdg/1226090483 · Zbl 1161.53058
[14] N. V. Krylov,Nonlinear elliptic and parabolic equations of the second order, translated from the Russian by P. L. Buzytsky [P. L. Buzytski˘ı], Mathematics and its Applications (Soviet Series),7, D. Reidel Publishing Co., Dordrecht, 1987. · Zbl 0619.35004
[15] H. Li and Y. Wei,On inverse mean curvature flow in Schwarzschild space and Kottler space, Calc. Var. Partial Differential Equations56(2017), no. 3, Art. 62, 21 pp.https: //doi.org/10.1007/s00526-017-1160-6 · Zbl 1372.53066
[16] H. Li, Y. Wei, and C. Xiong,A geometric inequality on hypersurface in hyperbolic space, Adv. Math.253(2014), 152-162.https://doi.org/10.1016/j.aim.2013.12.003 · Zbl 1316.53077
[17] G. M. Lieberman,Second Order Parabolic Differential Equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.https://doi.org/10.1142/3302 · Zbl 0884.35001
[18] M. Makowski and J. Scheuer,Rigidity results, inverse curvature flows and AlexandrovFenchel type inequalities in the sphere, Asian J. Math.20(2016), no. 5, 869-892.https: //doi.org/10.4310/AJM.2016.v20.n5.a2 · Zbl 1371.35101
[19] O. C. Schn¨urer,Surfaces expanding by the inverse Gauß curvature flow, J. Reine Angew. Math.600(2006), 117-134. · Zbl 1119.53045
[20] J. I. E. Urbas,On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Z.205(1990), no. 3, 355-372.https://doi.org/10. 1007/BF02571249 · Zbl 0691.35048
[21] ,An expansion of convex hypersurfaces, J. · Zbl 0746.53006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.