×

A Penrose inequality for graphs over Kottler space. (English) Zbl 1308.83093

Summary: In this work, we prove an optimal Penrose inequality for asymptotically locally hyperbolic manifolds which can be realized as graphs over Kottler space. Such inequality relies heavily on an optimal weighted Alexandrov-Fenchel inequality for the mean convex star-shaped hypersurfaces in Kottler space.

MSC:

83C57 Black holes
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions

References:

[1] Alías, L.J., de Lira, J.H.S., Malacarne, J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5(4), 527-562 (2006) · Zbl 1118.53038 · doi:10.1017/S1474748006000077
[2] Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138, 213-242 (1993) · Zbl 0826.58042 · doi:10.2307/2946638
[3] Bray, H.L.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59(2), 177-267 (2001) · Zbl 1039.53034
[4] Bray, H.L.: On the positive mass, Penrose, an ZAS inequalities in general dimension. In: Surveys in Geometric Analysis and Relativity, Adv. Lect. Math. (ALM), vol. 20. Int. Press, Somerville (2011) · Zbl 1260.53127
[5] Bray, H.L., Chruściel, P.T.: The Penrose Inequality, The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel, pp. 39-70 (2004) · Zbl 1058.83006
[6] Bray, H.L., Khuri, M.A.: P.D.E’.s which imply the Penrose conjecture. Asian J. Math. 15(4), 557-610 (2011) · Zbl 1244.83016 · doi:10.4310/AJM.2011.v15.n4.a5
[7] Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than eight. Duke Math. J. 148(1), 81-106 (2009) · Zbl 1168.53016 · doi:10.1215/00127094-2009-020
[8] Brendle, S.: Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. Pub. Math. de l’IHES. 117(1), 247-269 (2013) · Zbl 1273.53052
[9] Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold. arXiv:1209.0669 · Zbl 1252.53078
[10] Chruściel, P., Herzlich, M.: The mass of asymptotically hyperbolic Riemannian manifolds. Pac. J. Math. 212(2), 231-264 (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[11] Chruściel, P., Nagy, G.: The mass of spacelike hypersurface in asymptotically anti-de Sitter space-times. Adv. Theor. Math. Phys. 5, 697-754 (2002). gr-qc/0110014 · Zbl 1033.53061
[12] Chruściel, P., Simon, W.: Towards the classification of static vacuum spacetimes with negative cosmological constant. J. Math. Phys. 42(4), 1779-1817 (2001) · Zbl 1009.83009 · doi:10.1063/1.1340869
[13] Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Annales Henri Poincaré 14(5), 1135-1168 (2013). doi:10.1007/s00023-012-0218-4 · Zbl 1269.83068
[14] de Lima, L.L., Girão, F.: The ADM mass of asymptotically flat hypersurfaces. Trans. Amer. Math. Soc. (to appear). arXiv:1108.5474 · Zbl 1325.53049
[15] de Lima, L.L., Girão, F.: Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. arXiv:1201.4991 · Zbl 1317.83007
[16] de Lima, L.L., Girão, F.: An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. arXiv:12090669 · Zbl 1337.83048
[17] de Lima, L.L., Girão, F.: A penrose inequalities for asymptotically locally hyperbolic graphs. arXiv:1304.7882 · Zbl 1317.83007
[18] Ding, Q.: The inverse mean curvature flow in rotationally symmetric spaces. Chin. Ann. Math. Ser. B 32(1), 27-44 (2011) · Zbl 1211.53084 · doi:10.1007/s11401-010-0626-z
[19] Freire, A., Scwartz, F.: Mass-capacity inequalities for conformally flat manifolds with boundary. Comm. Partial. Differ. Equ, 39(1), 98-119 (2014) · Zbl 1287.53059
[20] Gerhardt, C.: Inverse curvature flows in hyperbolic space. J. Differ. Geom. 89(3), 487-527 (2011) · Zbl 1252.53078
[21] Ge, Y., Wang, G., Wu, J.: A new mass for asymptotically flat manifolds. arXiv:1211.3645 · Zbl 1301.53032
[22] Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov-Fenchel quermassintegral inequalities I. arXiv:1303.1714 · Zbl 1301.53077
[23] Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II. J. Differ. Geom. (to appear). arXiv:1304.1417 · Zbl 1301.53077
[24] Ge, Y., Wang, G., Wu, J.: The GBC mass for asymptotically hyperbolic manifolds. arXiv:1306.4233 · Zbl 1343.53033
[25] Gibbons, G.W.: Some comments on gravitational entropy and the inverse mean curvature flow. Class. Quantum Gravity 16(6), 1677-1687 (1999) · Zbl 0956.83012 · doi:10.1088/0264-9381/16/6/302
[26] Herzlich, M.: A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds. Commun. Math. Phys. 188, 121-133 (1997) · Zbl 0886.53032 · doi:10.1007/s002200050159
[27] Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries, pp. 103-121. Eur. Math. Soc, Zürich (2005) · Zbl 1082.53034
[28] Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353-437 (2001) · Zbl 1055.53052
[29] Huang, L.-H., Wu, D.: The equality case of the Penrose inequality for asymptotically flat graphs. Trans. Amer. Math. Soc. (to appear). arXiv:1205.2061 · Zbl 1376.53062
[30] Lam, M.-K.G.: The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions. arXiv.org/1010.4256
[31] Li, H., Wei, Y., Xiong, C.: A geometric ineqality on hypersurface in hyperbolic space. Adv. Math. 253, 152-162 (2014) · Zbl 1316.53077
[32] Li, H., Wei, Y., Xiong, C.: The Gauss-Bonnet-Chern mass for graphic manifolds. Ann. Global. Anal. Geom. 45(4) 251-266 (2014) · Zbl 1304.53058
[33] Lee, D., Neves, A.: A static uniqueness theorem for higher genus Kottler metrics, slides of a talk delivered at Tsinghua Sanya International Mathematical Forum
[34] Lee, D., Neves, A.: The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass. arXiv:1310.3002 · Zbl 1322.53038
[35] Mars, M.: Topical review: present status of the Penrose inequality. Class. Quantum Gravity 26(19), 193001 (2009) · Zbl 1178.83002
[36] Mirandola, H., Vitório, F.: The positive mass Theorem and Penrose inequality for graphical manifolds. arXiv:1304.3504 · Zbl 1309.53034
[37] Michel, B.: Geometric invariance of mass-like asymptotic invariants. J. Math. Phys. 52(5), 052504 (2011) · Zbl 1317.83030
[38] Neves, A.: Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J. Differ. Geom. 84(1), 711-748 (2010)
[39] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory. Cambridge University, Cambridge, MR1216521 (1993) · Zbl 0798.52001
[40] Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[41] Wang, X.: Mass for asymptotically hyperbolic manifolds. J. Differ. Geom. 57, 273-299 (2001) · Zbl 1037.53017
[42] Wang, G., Xia, C.: Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space. Adv. Math. 259, 532-556 (2014) · Zbl 1292.52008
[43] Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.