×

A class of inverse quotient curvature flow in the AdS-Schwarzschild manifold. (English) Zbl 1538.53112

Summary: In this paper, we study the asymptotic behavior of a class of inverse quotient curvature flow in the anti-de Sitter-Schwarzschild manifold. We prove that under suitable convex conditions for the initial hypersurface, one can get the long-time existence for the inverse curvature flow. Moreover, we also get that the principal curvatures of the evolving hypersurface converge to 1 when \(t\rightarrow+\infty\).

MSC:

53E10 Flows related to mean curvature
Full Text: DOI

References:

[1] Andrews, B., Contraction of convex hypersurfaces in Euclidean space, Calc Var Partial Differential Equations, 2, 2, 151-171 (1994) · Zbl 0805.35048 · doi:10.1007/BF01191340
[2] Andrews, B., Pinching estimates and motion of hypersurfaces by curvature functions, J Reine Angew Math, 608, 17-33 (2007) · Zbl 1129.53044
[3] Andrews, B.; Baker, C., Mean curvature flow of pinched submanifolds to spheres, J Differential Geom, 85, 3, 357-395 (2010) · Zbl 1241.53054 · doi:10.4310/jdg/1292940688
[4] Brendle, S.; Hung, P. K.; Wang, M. T., A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold, Comm Pure Appl Math, 1, 124-144 (2016) · Zbl 1331.53078 · doi:10.1002/cpa.21556
[5] Chen, C. Q.; Guan, P. F.; Li, J. F.; Scheuer, J., A fully-nonlinear flow and quermassintegral inequalities in the sphere, Pure Appl Math Quar, 18, 2, 437-461 (2022) · Zbl 1526.53095 · doi:10.4310/PAMQ.2022.v18.n2.a4
[6] Chen, L.; Mao, J., Non-parametric inverse curvature flows in the AdS-Schwarzschild manifold, J Geom Anal, 28, 2, 921-949 (2018) · Zbl 1393.53056 · doi:10.1007/s12220-017-9848-6
[7] Chow, B., Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J Differential Geom, 22, 117-138 (1985) · Zbl 0589.53005 · doi:10.4310/jdg/1214439724
[8] Gao Y, Mao J. Inverse Gauss curvature flow in a time cone of Lorentz-Minkowski space \(R_1^{n + 1}\). arXiv:2106.05973
[9] Guan, P. F.; Li, J. F., A mean curvature type flow in space forms, Int Math Res Not, 2015, 13, 4716-4740 (2015) · Zbl 1342.53090 · doi:10.1093/imrn/rnu081
[10] Gerhardt, C., Flow of nonconvex hypersurfaces into spheres, J Differential Geom, 32, 1, 299-314 (1990) · Zbl 0708.53045 · doi:10.4310/jdg/1214445048
[11] Gerhardt, C., Inverse curvature flows in hyperbolic space, J Differential Geom, 89, 3, 487-527 (2011) · Zbl 1252.53078 · doi:10.4310/jdg/1335207376
[12] Ge, Y. X.; Wang, G. F.; Wu, J.; Xia, C., A Penrose inequality for graphs over Kottler space, Calc Var Partial Differential Equations, 52, 3-4, 755-782 (2015) · Zbl 1308.83093 · doi:10.1007/s00526-014-0732-y
[13] Huisken, G., Flow by mean curvayure of convex surfaces into spheres, J Differential Geom, 20, 237-260 (1984) · Zbl 0556.53001 · doi:10.4310/jdg/1214438998
[14] Huisken, G., Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent Math, 84, 3, 463-480 (1986) · Zbl 0589.53058 · doi:10.1007/BF01388742
[15] Huisken, G., Deforming hypersurfaces of the sphere by their mean curvature, Math Z, 195, 2, 205-219 (1987) · Zbl 0626.53039 · doi:10.1007/BF01166458
[16] Huisken, G.; Polden, A., Geometric evolution equations for hypersurfaces//Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), 45-84 (1999), Berlin: Springer-Verlag, Berlin · Zbl 0942.35047
[17] Jin, Y. H.; Wang, X. F.; Wei, Y., Inverse curvature flows of rotation hypersurfaces, Acta Math Sin Engl Ser, 37, 11, 1692-1708 (2021) · Zbl 1484.53124 · doi:10.1007/s10114-021-0015-4
[18] Lei L, Xu H W. A new version of Huisken’s convergence theorem for mean curvature flow in spheres. arXiv:1505.07217
[19] Lei L, Xu H W. An optimal convergence theorem for mean curvature flow arbitrary codimension in hyperbolic spaces. arXiv:1503.06747
[20] Liu, K. F.; Xu, H. W.; Ye, F.; Zhao, E. T., The extension and convergence of mean curvature flow in higher codimension, Trans Amer Math Soc, 370, 2231-2261 (2017) · Zbl 1380.53076 · doi:10.1090/tran/7281
[21] Lieberman, G., Second Order Parabolic Differential Equations (1996), Singapore: World Scientific, Singapore · Zbl 0884.35001 · doi:10.1142/3302
[22] Li H Z, Wei Y. On inverse mean curvature flow in Schwarzschild space and Kottler space. Calc Var Partial Differential Equations, 2017, 56: Art 62 · Zbl 1372.53066
[23] Li, H. Z.; Xu, B. T., A class of inverse mean curvature type flows in the anti-de Sitter-Schwarzschild manifold, Sci China Math, 64, 7, 1573-1588 (2021) · Zbl 1469.53135 · doi:10.1007/s11425-020-1833-2
[24] Li, H. Z.; Wei, Y.; Xiong, C. W., A geometric inequality on hypersurface in hyperbolic space, Adv Math, 253, 152-162 (2014) · Zbl 1316.53077 · doi:10.1016/j.aim.2013.12.003
[25] Lu, S. Y., Inverse curvature flow in anti-de Sitter-Schwarzschild manifold, Comm Anal Geom, 27, 2, 465-489 (2019) · Zbl 1422.53055 · doi:10.4310/CAG.2019.v27.n2.a7
[26] Scheuer, J., Non-scale-invariant inverse curvature flows in hyperbolic space, Calc Var Partial Differential Equations, 53, 2, 91-123 (2015) · Zbl 1317.53089 · doi:10.1007/s00526-014-0742-9
[27] Scheuer, J., Inverse curvature flows in Riemannian warped products, J Funct Anal, 276, 4, 1097-1144 (2019) · Zbl 1423.35109 · doi:10.1016/j.jfa.2018.08.021
[28] Scheuer, J.; Xia, C., Locally constrained inverse curvature flows, Trans Amer Math Soc, 372, 10, 6771-6803 (2019) · Zbl 1427.53111 · doi:10.1090/tran/7949
[29] Urbas, J., On the expansion of star-shaped hypersurfaces by symmetric functions of their principal curvatures, Math Z, 205, 3, 355-372 (1990) · Zbl 0691.35048 · doi:10.1007/BF02571249
[30] Wang, Z. H., A Minkowski-type Inequality for Hypersurfaces in the Reissner-Nordström-anti-deSitter Manifold (2015), New York: Columbia University, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.