×

Pointwise expansion of degenerating immersions of finite total curvature. (English) Zbl 1505.30036

Summary: Generalising classical result of S. Müller and V. Šverák [J. Differ. Geom. 42, No. 2, 229–258 (1995; Zbl 0853.53003)], we obtain a pointwise estimate of the conformal factor of sequences of conformal immersions from the unit disk of the complex plane of uniformly bounded total curvature and converging strongly outside of a concentration point towards a branched immersions for which the quantization of energy holds. We show that the multiplicity associated to the conformal parameter becomes eventually constant to an integer equal to the order of the branch point of the limiting branched immersion. Furthermore, we deduce a \(C^0\) convergence of the normal unit in the neck regions. Finally, we show that these improved energy quantizations hold for Willmore surfaces of uniformly bounded energy and precompact conformal class, and for Willmore spheres arising as solutions of min-max problems in the viscosity method.

MSC:

30F10 Compact Riemann surfaces and uniformization
53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces

Citations:

Zbl 0853.53003

References:

[1] Bernard, Y.; Rivière, T., Singularity removability at branch points for Willmore surfaces, Pac. J. Math., 265, 2, 257 (2013) · Zbl 1304.30032 · doi:10.2140/pjm.2013.265.257
[2] Bernard, Y.; Rivière, T., Energy quantization for Willmore surfaces and applications, Ann. Math., 180, 87-136 (2014) · Zbl 1325.53014 · doi:10.4007/annals.2014.180.1.2
[3] Brezis, H., Analyse fonctionnelle. Théorie et Applications. Collection Mathématiques Appliquées pour la Maîtrise, 234 (1983), Paris: Masson, Paris · Zbl 0511.46001
[4] Coifman, R.; Lions, P-L; Meyer, Y.; Semmes, SW, Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72, 3, 247-286 (1993) · Zbl 0864.42009
[5] Federer, H., Geometric Measure Theory (1969), Berlin: Springer, Berlin · Zbl 0176.00801
[6] Ge, Y., A remark on generalized harmonic maps into spheres, Nonlinear Anal. Ser. A Theory Methods, 36, 4, 495-506 (1999) · Zbl 0932.35071 · doi:10.1016/S0362-546X(98)00079-0
[7] Grüter, M.; Widman, K-O, The Green function for uniformly elliptic equations, Manuscr. Math., 37, 3, 303-342 (1982) · Zbl 0485.35031 · doi:10.1007/BF01166225
[8] Gulliver, R.; Osserman, R.; Halsey, R., A theory of branched immersions of surfaces, Am. J. Math., 95, 750-812 (1973) · Zbl 0295.53002 · doi:10.2307/2373697
[9] Han, Q.; Lin, F., Elliptic Partial Differential Equations. Courant Lecture Notes in Mathematics, 1, 144 (1997), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1051.35031
[10] Hörmander, L., An Introduction to Complex Analysis in Several Variables (1990), Amsterdam: Elsevier, Amsterdam · Zbl 0685.32001
[11] Hélein, F.: Applications harmoniques, lois de conservation, et repères mobiles. Diderot éditeur, Sciences et Arts (1996)
[12] Lamm, T.; Sharp, B., Global estimates and energy identities for elliptic systems with antisymmetric potentials, Commun. Partial Differ. Equ., 41, 4, 579-608 (2016) · Zbl 1352.35036 · doi:10.1080/03605302.2015.1116559
[13] Laurain, P.; Rivière, T., Angular energy quantization for linear elliptic systems with antisymmetric potentials and applications, Anal. Partial Differ. Equ., 7, 1, 1-41 (2014) · Zbl 1295.35204
[14] Laurain, P.; Rivière, T., Optimal estimate for the gradient of Green functions on degenerating surfaces and applications, Commun. Anal. Geom., 26, 4, 887 (2018) · Zbl 1400.30049 · doi:10.4310/CAG.2018.v26.n4.a7
[15] Laurain, P.; Rivière, T., Energy quantization of Willmore surfaces at the boundary of the moduli space, Duke Math. J., 167, 11, 2073-2124 (2018) · Zbl 1401.53009 · doi:10.1215/00127094-2018-0010
[16] Marque, N.: An \(\varepsilon \)-regularity with mean curvature control for willmore immersions and application to minimal bubbling. https://arxiv.org/1904.05215 (2019)
[17] Marque, N., Minimal bubbling for Willmore surfaces, Int. Math. Res. Not., 2021, 17708 (2020) · Zbl 1527.53009 · doi:10.1093/imrn/rnaa079
[18] Michelat, A., On the Morse Index of Willmore spheres in \(S^3\), Commun. Anal. Geom., 28, 6, 1337-1406 (2020) · Zbl 1468.35056 · doi:10.4310/CAG.2020.v28.n6.a4
[19] Michelat, A.: Morse Index estimates of min-max Willmore surfaces. arXiv:1808.07700 (2018)
[20] Michelat, A., On the Morse Index of Branched Willmore spheres in 3-space, Calc. Var. Partial Differ. Equ., 60, 97 (2021) · Zbl 1467.35133 · doi:10.1007/s00526-021-01985-9
[21] Michelat, A.: On the Morse Index of critical points in the viscosity method. Calc. Var. Partial Differ. Equ. 61(2), 42 (2022) · Zbl 1502.46060
[22] Michelat, A.; Rivière, T., A viscosity method for the min-max construction of closed geodesics, ESAIM Control Optim. Calc. Var., 22, 1282-1324 (2016) · Zbl 1353.49006 · doi:10.1051/cocv/2016039
[23] Müller, S.; Šverák, V., On surfaces of finite total curvature, J. Differ. Geom., 42, 2, 229-258 (1995) · Zbl 0853.53003 · doi:10.4310/jdg/1214457233
[24] Olivier, D.; Emmanuel, H.; Robert, F., A \(C^0\)-theory for the blow-up of second order elliptic equations of critical sobolev growth, Electron. Res. Announc. Am. Math. Soc., 9, 19-25 (2003) · Zbl 1061.58020 · doi:10.1090/S1079-6762-03-00108-2
[25] Pigati, A.; Rivière, T., A proof of the multiplicity one conjecture for min-max minimal surfaces in arbitrary codimension, Duke Math. J., 169, 11, 2005-2044 (2020) · Zbl 1468.49045 · doi:10.1215/00127094-2020-0002
[26] Pigati, A.; Rivière, T., The regularity of parametrized integer stationary varifolds in two dimensions, Commun. Pure Appl. Math., 73, 9, 1981-2042 (2020) · Zbl 1512.49039 · doi:10.1002/cpa.21927
[27] Rivière, T., Conservation laws for conformally invariant variational problems, Invent. Math., 168, 1, 1-22 (2007) · Zbl 1128.58010 · doi:10.1007/s00222-006-0023-0
[28] Rivière, T., Analysis aspects of Willmore surfaces, Invent. Math., 174, 1-45 (2008) · Zbl 1155.53031 · doi:10.1007/s00222-008-0129-7
[29] Rivière, T., Variational principles for immersed surfaces with \(L^2\)-bounded second fundamental form, J. Reine Angew. Math., 695, 41-98 (2014) · Zbl 1304.49095
[30] Rivière, T.: Conformally invariant variational problems. In preparation (2021)
[31] Rivière, T., Lower semi-continuity of the index in the visosity method for minimal surfaces, Int. Math. Res. Not. IMRN, 8, 5651-5675 (2021) · Zbl 1478.53110 · doi:10.1093/imrn/rnz012
[32] Rivière, T., The regularity of conformal target harmonic maps, Calc. Var. Partial Differ. Equ., 56, 4, 15 (2017) · Zbl 1380.58013 · doi:10.1007/s00526-017-1215-8
[33] Rivière, T., A viscosity method in the min-max theory of minimal surfaces, Publ. Math. Inst. Hautes Études Sci., 126, 1, 177-246 (2017) · Zbl 1387.53084 · doi:10.1007/s10240-017-0094-z
[34] Rivière, T., Willmore minmax surfaces and the cost of the sphere eversion, J. Eur. Math. Soc. (JEMS), 23, 2, 349-423 (2021) · Zbl 1461.49010 · doi:10.4171/JEMS/1013
[35] Toro, T., Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J., 77, 1, 193-227 (1995) · Zbl 0847.42011 · doi:10.1215/S0012-7094-95-07708-4
[36] Wang, C., Remarks on approximate harmonic maps in dimension two, Calc. Var. Partial Differ. Equ., 56, 2, 24 (2017) · Zbl 1377.58011 · doi:10.1007/s00526-017-1126-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.