×

On the existence and uniqueness of limit cycles for hybrid oscillators. (English) Zbl 1527.34056

The authors study the limit cycles of the family of planar vector fields given by \[ \dot x=y, \quad \dot y = -g(x)-f(x,y)y, \] which has as a special case, when \(f(x,y)=f(x)\), the class of Liénard systems. The paper has two main results. The first one provides sufficient conditions for the system to have at most one limit cycle and, when it exists, provides also its stability. The second main result provides sufficient conditions for the system to have at least one limit cycle. In both cases, the functions \(f\) and \(g\) needs only to be continuous and Lipschitz continuous, respectively. In particular, the system needs not to be continuously differentiable. The authors also apply their results to the van der Pol-Duffing-Rayleigh oscillator \[ \dot x=y, \quad \dot y = -x-x^3-\varepsilon(b+x^2+ay^2)y, \] and on the asymmetric and nonsmooth van der Pol-Rayleigh oscillator \[ \dot x=y, \quad \dot y = -g(x)-\varepsilon(b+x^2+ay^2)y, \] where \[ g(x)=\begin{cases} rx, \text{ if } x\geqslant 0, \\ lx, \text{ if } x<0. \end{cases} \] In booth cases they obtain sufficient conditions for the existence of a unique limit cycle. Moreover, the authors study the stability and position of the limit cycle on the plane.

MSC:

34C07 Theory of limit cycles of polynomial and analytic vector fields (existence, uniqueness, bounds, Hilbert’s 16th problem and ramifications) for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Cândido, MR; Llibre, J.; Valls, C., Non-existence, existence, and uniqueness of limit cycles for a generalization of the van der Pol-Duffing and the Rayleigh-Duffing oscillators, Physica D, 407, 132458 (2020) · Zbl 1496.34062 · doi:10.1016/j.physd.2020.132458
[2] Chen, H.; Tang, Y.; Xiao, D., Global dynamics of hybrid van der Pol-Rayleigh oscillators, Physica D, 428, 133021 (2021) · Zbl 1496.34063 · doi:10.1016/j.physd.2021.133021
[3] De Castro, A., Un teorema di confronto per l’equazone differenziale delle oscillazioni di rilassamento, Boll. Un. Mat. Ital., 9, 280-282 (1954) · Zbl 0056.08301
[4] Dumortier, F.; Li, C., On the uniqueness of limit cycles surrounding one or more singularities for Liénard equations, Nonlinearity, 9, 1489-1500 (1996) · Zbl 0907.58056 · doi:10.1088/0951-7715/9/6/006
[5] Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems, UniversiText, Springer, New York (2006) · Zbl 1110.34002
[6] Dumortier, F.; Rousseau, C., Cubic Liénard equations with linear damping, Nonlinearity, 3, 1015-1039 (1990) · Zbl 0716.58023 · doi:10.1088/0951-7715/3/4/004
[7] Erlicher, S.; Trovato, A.; Argoul, P., Modelling the lateral pedestrian force on a rigid floor by a self-sustained oscillator, Mech. Syst. Signal Proc., 24, 1579-1604 (2010) · doi:10.1016/j.ymssp.2009.11.006
[8] Erlicher, S.; Trovato, A.; Argoul, P., A modified hybrid Van der Pol/Rayleigh model for the lateral Pedestrain force on a periodically moving floor, Mech. Syst. Signal Proc., 41, 481-501 (2013) · doi:10.1016/j.ymssp.2013.08.005
[9] Filho, A.C.P., Dutra, M.S.: Application of hybrid van der Pol-Rayleigh oscillators for modeling of a bipedal robot. Mech. Soli. Braz. 1, 209-221 (2009)
[10] Gasull, A.; Giné, J.; Valls, C., Highest weak focus order for trigonometric Liénard equations, Ann. Mat. Pura Appl., 199, 1673-1684 (2020) · Zbl 1450.34022 · doi:10.1007/s10231-019-00936-8
[11] Gasull, A.; Sabatini, M., Fixed and moving limit cycles for Liénard equations, Ann. Mat. Pura Appl., 198, 1985-2006 (2019) · Zbl 1453.34039 · doi:10.1007/s10231-019-00850-z
[12] Hale, JK, Ordinary Differential Equations (1980), New York: Robert E. Krieger Publishing Company, New York · Zbl 0433.34003
[13] Levinson, N.; Smith, OK, A general equation for relaxation oscillations, Duke Math. J., 9, 382-403 (1942) · Zbl 0061.18908 · doi:10.1215/S0012-7094-42-00928-1
[14] Lazer, AC; Mckenna, PJ, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32, 537-578 (1990) · Zbl 0725.73057 · doi:10.1137/1032120
[15] Massera, JL, Sansone sur l’equation de Liénard, Sur un Théorème de, G. Boll. Un. Mat. Ital., 9, 367-369 (1954) · Zbl 0057.07004
[16] Ortega, R., Asymmetric oscillators and twist mappings, J. Lond. Math. Soc., 2, 53, 325-342 (1996) · Zbl 0860.34017 · doi:10.1112/jlms/53.2.325
[17] Ortega, R., Roots of unity and unbounded motions of an asymmetric oscillator, J. Differ. Equ., 143, 201-220 (1998) · Zbl 0899.34023 · doi:10.1006/jdeq.1997.3367
[18] Thomson, WT; Dahleh, MD, Theory of Vibration with Applications (1998), New York: Springer, New York
[19] Xiao, D.; Zhang, Z., On the uniqueness and nonexistence of limit cycles for predator-prey systems, Nonlinearity, 16, 1-17 (2003) · Zbl 1042.34060 · doi:10.1088/0951-7715/16/3/321
[20] Ye, Y.: Theory of Limit Cycles, Transl. Math. Monogr., Amer. Math. Soc. Providence, RI (1986) · Zbl 0588.34022
[21] Yuan, Z.; Ke, A.; Han, M., On the number of limit cycles of a class of Liènard-Rayleigh oscillators, Physica D, 438, 133366 (2022) · Zbl 1514.34056 · doi:10.1016/j.physd.2022.133366
[22] Zeng, X.; Zhang, Z.; Gao, S., On the uniqueness of the limit cycle of the generalized Liénard equation, Bull. Lond. Math. Soc., 26, 213-247 (1994) · Zbl 0805.34031 · doi:10.1112/blms/26.3.213
[23] Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations, Transl. Math. Monogr., Amer. Math. Soc. Providence, RI (1992) · Zbl 0779.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.