×

Rowmotion on fences. (English) Zbl 1515.05205

Summary: A fence is a poset with elements \(F=\{x_1,x_2,\ldots,x_n\}\) and covers \[ x_1 \triangleleft x_2 \triangleleft \cdots \triangleleft x_a \triangleright x_{a+1} \triangleright \cdots \triangleright x_b \triangleleft x_{b+1} \triangleleft \cdots, \] where \(a,b,\ldots\) are positive integers. We investigate rowmotion on antichains and ideals of \(F\). In particular, we show that orbits of antichains can be visualized using tilings. This permits us to prove various homomesy results for the number of elements of an antichain or ideal in an orbit. Rowmotion on fences also exhibits a new phenomenon, which we call homometry, where the value of a statistic is constant on orbits of the same size. Along the way, we prove a homomesy result for all self-dual posets and show that any two Coxeter elements in certain toggle groups behave similarly with respect to homomesies which are linear combinations of ideal indicator functions. We end with some conjectures and avenues for future research.

MSC:

05E16 Combinatorial aspects of groups and algebras
06D75 Other generalizations of distributive lattices
06A07 Combinatorics of partially ordered sets
13F60 Cluster algebras

References:

[1] P. J. Cameron and D. G. Fon-Der-Flaass. “Orbits of antichains revisited”.European J. Combin.16.6 (1995), pp. 545-554.doi. · Zbl 0831.06001
[2] A. Claussen. “Expansion posets for polygon cluster algebras”. PhD thesis. Michigan State University, 2020.
[3] S. Elizalde, M. Plante, T. Roby, and B. Sagan. “Rowmotion on fences”. 2021.arXiv: 2108.12443.Link.
[4] S. Elizalde and B. E. Sagan. “Partial rank symmetry and fences”. In preparation.
[5] H. Eriksson and K. Eriksson. “Conjugacy of Coxeter elements”.Electron. J. Combin.16.2, Special volume in honor of Anders Björner (2009), Research Paper 4, 7.Link. · Zbl 1161.20034
[6] E. R. Gansner. “On the lattice of order ideals of an up-down poset”.Discrete Math.39.2 (1982), pp. 113-122.doi. · Zbl 0474.06008
[7] M. Joseph and T. Roby. “Toggling independent sets of a path graph”.Electron. J. Combin. 25.1 (2018), Paper No. 1.18, 31. · Zbl 1380.05202
[8] T. McConville, B. E. Sagan, and C. Smyth. “On a rank-unimodality conjecture of MorierGenoud and Ovsienko”.Discrete Math.344.8 (2021), pp. 112483, 13.doi. · Zbl 1515.06003
[9] S. Morier-Genoud and V. Ovsienko. “q-deformed rationals andq-continued fractions”. Forum Math. Sigma8(2020), Paper No. e13, 55.doi. · Zbl 1434.05023
[10] E. Munarini and N. Zagaglia Salvi. “On the rank polynomial of the lattice of order ideals of fences and crowns”.Discrete Math.259.1-3 (2002), pp. 163-177.doi. · Zbl 1020.06003
[11] G. Musiker, R. Schiffler, and L. Williams. “Positivity for cluster algebras from surfaces”. Adv. Math.227.6 (2011), pp. 2241-2308.doi. · Zbl 1331.13017
[12] E. K. O ˘guz and M. Ravichandran. “Rank polynomials of fence posets are unimodal”. In preparation. · Zbl 07622661
[13] J. Propp. “The combinatorics of frieze patterns and Markoff numbers”.Integers20(2020), Paper No. A12, 38. · Zbl 1435.05018
[14] J. Propp and T. Roby. “Homomesy in Products of Two Chains”.Electron. J. Combin.22.3 (2015). · Zbl 1319.05151
[15] T. Roby. “Dynamical algebraic combinatorics and the homomesy phenomenon”.Recent trends in combinatorics. Vol. 159. IMA Vol. Math. Appl. Springer, [Cham], 2016, pp. 619-652. · Zbl 1354.05146
[16] R. Schiffler. “On cluster algebras arising from unpunctured surfaces. II”.Adv. Math.223.6 (2010), pp. 1885-1923.doi. · Zbl 1238.13029
[17] R. Schiffler and H. Thomas. “On cluster algebras arising from unpunctured surfaces”.Int. Math. Res. Not. IMRN17 (2009), pp. 3160-3189.doi. · Zbl 1171.30019
[18] J. Striker. “Dynamical algebraic combinatorics: promotion, rowmotion, and resonance”. Notices Amer. Math. Soc.64.6 (2017), pp. 543-549.doi. · Zbl 1370.05219
[19] J. Striker and N. Williams. “Promotion and rowmotion”.European J. Combin.33.8 (2012), pp. 1919-1942.doi. · Zbl 1260.06004
[20] H. Thomas and N. Williams. “Rowmotion in slow motion”.Proc. Lond. Math. Soc. (3)119.5 (2019), pp. 1149-1178.doi. · Zbl 1459.06010
[21] T. Yurikusa. “Combinatorial cluster expansion formulas from triangulated surfaces”.Electron. J. Combin.26.2 (2019), Paper No. 2.33, 39 · Zbl 1436.13054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.