×

Classification of torus manifolds with codimension one extended actions. (English) Zbl 1246.57082

The paper under review provides the classification of \(2n\)-dimensional compact connected manifolds \(M\) acted on by the \(n\)-dimensional torus \(T^n\) with a nonempty fixed point set such that the corresponding action extends to an action of a compact Lie group \(G\) that contains \(T^n\) as maximal torus. The main result is that there exist seven isomorphism classes of such pairs \((M,G)\) and precise descriptions are provided for representatives of these isomorphism classes. As a corollary, one determines which ones of these manifolds are nonsingular toric varieties or quasitoric manifolds. The classification of the pairs \((M,G)\) under the additional hypotheses that \(M\) is oriented and the \(G\)-action is transitive was obtained in the author’s earlier paper [Osaka J. Math. 47, No. 1, 285–299 (2010; Zbl 1238.57033)].

MSC:

57S25 Groups acting on specific manifolds
57S15 Compact Lie groups of differentiable transformations
22F30 Homogeneous spaces

Citations:

Zbl 1238.57033

References:

[1] A. V. Alekseevskii, D. V. Alekseevskii, G-manifolds with one-dimensional orbit space, Adv. in Soviet Math. 8 (1992), 1–31. · Zbl 0238.53040
[2] F. Bosio, L. Meersseman, Real quadrics in C n , complex manifolds and convex polytopes, Acta Math. 197 (2006), 53–127. · Zbl 1157.14313 · doi:10.1007/s11511-006-0008-2
[3] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972. Russian transl.: Г. Бредон, Введение в теорию компактных групп преобразований, Наука, М., 1980. · Zbl 0369.00006
[4] V. M. Buchstaber, T. E. Panov, Torus Actions and their Applications in Topology and Combinatorics, University Lecture Series, Vol. 24, American Mathematical Society, Providence, RI, 2002. · Zbl 1012.52021
[5] M. Davis, T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus action, Duke. Math. J. 62 (1991), 417–451. · Zbl 0733.52006 · doi:10.1215/S0012-7094-91-06217-4
[6] W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 113, Princeton University Press, Princeton, N.J., 1993. · Zbl 0813.14039
[7] A. Gambioli, SU(3)-manifolds of cohomogeneity one, Ann. Global Anal. Geom. 34 (2008), no. 1, 77–100. · Zbl 1155.57033 · doi:10.1007/s10455-007-9097-1
[8] V. Guillemin, T. S. Holm, C. Zara, A GKM description of the equivariant cohomology ring of a homogeneous space, J. Algebraic Comb. 23 (2006), no. 1, 21–41. · Zbl 1096.53050 · doi:10.1007/s10801-006-6027-4
[9] A. Hattori, M. Masuda, Theory of multi-fans, Osaka. J. Math. 40 (2003), 1–68. · Zbl 1034.57031
[10] W. C. Hsiang, W. Y. Hsiang, Classification of differentiable actions on S n , R n and D n with S k as the principal orbit type, Ann. of Math. 82 (1965), 421–433. · Zbl 0132.19801 · doi:10.2307/1970705
[11] K. Kawakubo, The Theory of Transformation Groups, Clarendon Press, Oxford University Press, New York, 1991. · Zbl 0744.57001
[12] S. Kuroki, On transformation groups which act on torus manifolds, in: Proceedings of 34th Symposium on Transformation Groups, 10–26 (T. Kawakami ed.), Wing Co., Wakayama, 2007, pp. 10–26.
[13] S. Kuroki, Classification of compact transformation groups on complex quadrics with codimension one orbits, Osaka J. Math. 46 (2009), 21–85. · Zbl 1170.57028
[14] S. Kuroki, Characterization of homogeneous torus manifolds, Osaka J. Math. 47 (2010) 285–299. · Zbl 1238.57033
[15] S. Kuroki, Classification of quasitoric manifolds with codimension one extended actions, OCAMI preprint series 09–4 (2009).
[16] S. Kuroki, Classification of torus manifolds with codimension one extended actions, OCAMI preprint series 09–5 (2009).
[17] M. Masuda, Unitary toric manifolds, multi-fans and equivariant index, Tôhoku Math. J. 51 (1999), 237–265. · Zbl 0940.57037 · doi:10.2748/tmj/1178224815
[18] M. Masuda, T. Panov, On the cohomology of torus manifolds, Osaka J. Math. 43 (2006), 711–746. · Zbl 1111.57019
[19] J. W. Milnor, J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N. J., University of Tokyo Press, Tokyo, 1974. Russian transl.: Дж. Милнор, Дж. Сташеф, Характеристические классы, Мир, M., 1979.
[20] M. Mimura, H. Toda, Topology of Lie Groups, I, II, Translations of Mathematical Monographs, Vol. 91, American Mathematical Society, Providence, RI, 1991 · Zbl 0757.57001
[21] D. Montgomery, H. Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943), 454–470. · Zbl 0063.04077 · doi:10.2307/1968975
[22] T. Oda, Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15, Springer-Verlag, Berlin, 1988. · Zbl 0628.52002
[23] F. Uchida, Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. 3 (1977), no. 1, 141–189. · Zbl 0374.57009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.