×

SU(3)-manifolds of cohomogeneity one. (English) Zbl 1155.57033

A cohomogeneity-one \(G\)-space \(M\) is a smooth manifold with a smooth action of a compact semisimple group such that the principal orbits are codimension-one submanifolds. Such a \(G\)-space has the following nice property (as shown by [P. S. Mostert, Ann. Math. (2) 65, 447–455 (1957); errata ibid. 66, 589 (1957; Zbl 0080.16702)]) that if \(M\) is compact, then the orbit space \(M/G\) is isomorphic to the interval \([0,1]\) or \(S^1\); if \(M\) is non-compact, then \(M/G\) is isomorphic to \([0,1)\) or \({\mathbb R}\). In particular, in the case where \(M/G=[0,1]\), there are precisely two singular orbits corresponding to the endpoints of \([0,1]\). The study on such \(G\)-spaces has had an increasing development in the recent years. For example, [A. Dancer and A. Swann, J. Geom. Phys. 21, No. 3, 218–230 (1997; Zbl 0909.53032) and Int. J. Math. 10, No. 5, 541-570 (1999; Zbl 1066.53510)] classified cohomogeneity-one hyper-Kähler and compact quaternion-Kähler \(G\)-manifolds if \(G\) is simple or semisimple.
The paper of under review considers 7- and 8-dimensional smooth manifolds \(M\) with an action of \(SU(3)\) of cohomogeneity-one, and gives the classification result in the following cases (1) \(M\) is simply connected and \(M/SU(3)=[0,1]\), and (2) \(M/G=S^1\) and the principal orbits are simply connected. In addition, the result is also applied to the study of \(SU(3)\) as a manifold, the 8-dimensional quaternion-Kähler manifolds etc.
Reviewer: Zhi Lü (Shanghai)

MSC:

57S25 Groups acting on specific manifolds
57S15 Compact Lie groups of differentiable transformations
22E46 Semisimple Lie groups and their representations
53C30 Differential geometry of homogeneous manifolds
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry
58D05 Groups of diffeomorphisms and homeomorphisms as manifolds

References:

[1] Alekseevsky, D.V.: Compact quaternion spaces. Funct. Anal. Appl. 2, 106–114 (1968) · doi:10.1007/BF01075944
[2] Alekseevsky, A.V., Alekseevsky, D.V.: G-manifold with one-dimensional orbit space. Adv. in Sov. Mat. 8, 1–31 (1992) · Zbl 0914.57023
[3] Alekseevsky, A.V., Alekseevsky, D.V.: Riemannian G-manifold with one-dimensional orbit space. Ann. Global Anal. Geom. 11, 197–211 (1993) · Zbl 0810.53043
[4] Alekseevsky, D.V., Podestà, F.: Compact cohomogeneity one Riemannian manifolds of positive Euler characteristic and quaternionic Kähler manifolds, Geometry, Topology, Physics. In: Apanasov et al. (eds.) Proceedings of the First USA-Brazil Workshop, Campinas 1996, pp. 1–33, de Gruyter, Berlin (1997) · Zbl 0902.57030
[5] Aloff, S., Wallach, N.: An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. A.M.S. 81, 93–97 (1975) · Zbl 0362.53033 · doi:10.1090/S0002-9904-1975-13649-4
[6] Atiyah, M., Berndt, J.: Projective planes, Severi varieties and spheres, Surveys in Differential Geometry VIII, Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck, pp. 1–27, International Press, Somerville, MA (2003) · Zbl 1057.53040
[7] Atiyah, M., Witten, E.: M-theory dynamics on a manifold of G 2 holonomy. Adv. Theor. Math. Phys. 6, 1–106 (2002) · Zbl 1033.81065
[8] Battaglia, F.: Circle actions and Morse theory on quaternion-Kähler manifolds. J. Lond. Math. Soc. 59, 345–358 (1999) · Zbl 0922.53017 · doi:10.1112/S0024610798006930
[9] Bérard Bergery, L.: Sur de nouvelles variétés riemanniennes d’Einstein, Publications de l’Institut E. Cartan 4, pp. 1–60 (Nancy, 1982) · Zbl 0544.53038
[10] Besse, A.: Einstein Manifolds. Springer-Verlag (1987) · Zbl 0613.53001
[11] Bredon, G.E.: Introduction to Compact Transformation Groups, Number 46 in Pure and Applied Mathematics, Academic Press (1972) · Zbl 0246.57017
[12] Bröcker, T., tom Dieck, T.: Representations of Compact Lie Groups. Springer (1985) · Zbl 0581.22009
[13] Bryant, R.L., Salamon, S.M.: On the construction of some complete metrics with exceptional holonomy. Duke Math. J. 58, 829–850 (1989) · Zbl 0681.53021 · doi:10.1215/S0012-7094-89-05839-0
[14] Conlon, L.: The topology of certain spaces of paths on a compact symmetric space. Trans. Amer. Math. Soc. 112, 228–248 (1964) · Zbl 0146.19602 · doi:10.1090/S0002-9947-1964-0163328-1
[15] Chekalov, I.V.: Primitive subalgebras of complex Lie algebras I. Primitive subalgebras of the classical complex Lie algebras. Pacific J. Math. 158(2), 273–291 (1993) · Zbl 0741.17004
[16] Dancer, A., Swann, A.F.: Hyperkähler metrics of cohomogeneity one. J. Geom. Phys. 21, 218–230 (1997) · Zbl 0909.53032 · doi:10.1016/S0393-0440(96)00017-4
[17] Dancer, A., Swann, A.F.: Quaternionic Kähler manifolds of cohomogeneity one. Int. J. Math. 10, 541–570 (1999) · Zbl 1066.53510 · doi:10.1142/S0129167X99000215
[18] Dancer, A., Wang, M.Y.: Painlevé expansions, cohomogeneity one metrics and exceptional holonomy. Comm. Anal. Geom. 12, 887–926 (2004) · Zbl 1092.53039
[19] Fino, A., Parton, M., Salamon, S.: Families of strong KT structures in six dimensions. Comment. Math. Helv. 79, 317–340 (2004) · Zbl 1062.53062 · doi:10.1007/s00014-004-0803-3
[20] Galicki, K., Lawson, B.: Quaternionic reduction and quaternionic orbifolds. Mat. Ann. 282, 1–21 (1988) · Zbl 0628.53060 · doi:10.1007/BF01457009
[21] Gambioli, A.: Latent quaternionic geometry, math.DG/0604219, Tokyo J. Math. (to appear) · Zbl 1283.53046
[22] Golubitsky, M.: Primitive actions and maximal subgroups of Lie Groups. J. Diff. Geom. 7, 175–191 (1972) · Zbl 0265.22024
[23] Grove, K., Verdiani, L., Wilking, B., Ziller, W.: Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(2), 159–170 (2006) · Zbl 1170.53307
[24] Grove, K., Wilking, B., Ziller, W.: Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Diff. Geom. (to appear) · Zbl 1145.53023
[25] Grove, K., Ziller, W.: Curvature and symmetry of Milnor spheres. Ann. Math. 152, 331–367 (2000) · Zbl 0991.53016 · doi:10.2307/2661385
[26] Grove, K., Ziller, W.: Cohomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149, 619–646 (2002) · Zbl 1038.53034 · doi:10.1007/s002220200225
[27] Gukov, S., Sparks, J.: M-Theory on Spin(7) manifolds. Nucl. Phys. B 625, 3–69 (2002) · Zbl 0989.83047 · doi:10.1016/S0550-3213(02)00018-4
[28] Gukov, S., Sparks, J., Tong, D.: Conifold transitions and five-brane condensation in M-theory on Spin(7) manifolds. Class. Quantum Grav. 20, 665–705 (2003) · Zbl 1045.83058 · doi:10.1088/0264-9381/20/4/306
[29] Harvey, R., Lawson, H.B.: Calibrated Geometries. Acta Math. 148, 47–157 (1982) · Zbl 0584.53021 · doi:10.1007/BF02392726
[30] Heintze, E., Palais, R., Terng, C.-L., Thorbergsson, G.: In: Yau, S.-T. (ed.) Hyperpolar Actions on Symmetric Spaces, Geometry, Topology and Physics for Raoul Bott. International Press, Cambridge (1995) · Zbl 0871.57035
[31] Hitchin, N.: Stable forms and special metrics, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000). Contemp. Math. 288, 70–89 (2000)
[32] Horn, R.A., Johnson, C.R.: Matrix Algebra. Cambridge Univ. Press (1985) · Zbl 0576.15001
[33] Joyce, D.: Compact hypercomplex and quaternionic manifolds. J. Diff. Geom. 35, 743–761 (1992) · Zbl 0735.53050
[34] Kobak, P.Z., Swann, A.F.: Quaternionic geometry of a nilpotent variety. Math. Ann. 297, 747–764 (1993) · Zbl 0807.53040 · doi:10.1007/BF01459528
[35] Kollross, A.A.: A classification of hyperpolar and cohomogeneity one actions. Trans. Am. Math. Soc. 354, 571–612 (2001) · Zbl 1042.53034 · doi:10.1090/S0002-9947-01-02803-3
[36] Miyaoka, R.: Bryant-Salamon’s G 2 manifolds and the hypersurface geometry, math-ph/0605074
[37] Mostert, P.S.: On a compact Lie group action on manifolds. Ann. Math. 65, 447–455 (1957) · Zbl 0080.16702 · doi:10.2307/1970056
[38] Neumann, W.: 3-dimensional G-manifolds with two dimensional orbits. In: Mostert, P.S.(eds) Proceedings of the Conference on Transformation Groups, pp. 220–222. Springer-Verlag, New Orleans (1967)
[39] Podestà, F., Verdiani, L.: Positively curved 7-dimensional manifolds. Quart. J. Math. Oxford 50, 497–504 (1999) · Zbl 0942.53026 · doi:10.1093/qjmath/50.200.497
[40] Podestà, F., Verdiani, L.: Totally geodesic orbits of isometries. Ann. Global Anal. Geom. 16, 399–412 (1998) · Zbl 0912.53028 · doi:10.1023/A:1006510417098
[41] Podestà, F., Verdiani, L.: A note on quaternion-Kähler manifolds. Int. J. Math. 11, 279–283 (2000) · Zbl 1110.53304 · doi:10.1142/S0129167X00000143
[42] Poon, Y.S., Salamon, S.M.: Eight-dimensional quaternionic-Kähler manifolds with positive scalar curvature. J. Diff. Geom. 33, 363–378 (1991) · Zbl 0733.53035
[43] Salamon, S.M.: Quaternionic Kähler manifolds. Invent. Math. 67, 143–171 (1982) · Zbl 0486.53048 · doi:10.1007/BF01393378
[44] Salamon, S.M.: Minimal surfaces and symmetric spaces. Differential geometry, pp. 103–114. Santiago de Compostela, 1984, Res. Notes in Math. 131, Pitman, Boston, MA (1985)
[45] Searle, K.: Cohomogeneity and positive curvature in low dimensions, Math. Z. 214, 491–498 (1993); Corrigendum, Math. Z. 226, 165–167 (1997) · Zbl 0804.53057
[46] Swann, A.F.: Homogeneous twistor spaces and nilpotent orbits. Math. Ann. 313, 161–188 (1999) · Zbl 0923.53019 · doi:10.1007/s002080050256
[47] Uchida, F.: Classification of compact tranformation groups on cohomology complex projective spaces with codimension one orbits. Japan J. Math. 3, 141–189 (1977) · Zbl 0374.57009
[48] Verdiani, L.: Cohomogeneity one Riemannian manifolds of even dimension with strictly positive curvature, I. Math. Z. 241, 329–339 (2002) · Zbl 1028.53035 · doi:10.1007/s002090200417
[49] Verdiani, L.: Cohomogeneity one manifolds of even dimension with strictly positive sectional curvature. J. Diff. Geom. 68, 31–72 (2004) · Zbl 1100.53033
[50] Wolf, J.A.: Complex Homogeneous contact structures and quaternionic symmetric spaces. J. Math. Mech. 14, 1033–1047 (1965) · Zbl 0141.38202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.