×

Low-rank tensor methods for partial differential equations. (English) Zbl 07736652

Summary: Low-rank tensor representations can provide highly compressed approximations of functions. These concepts, which essentially amount to generalizations of classical techniques of separation of variables, have proved to be particularly fruitful for functions of many variables. We focus here on problems where the target function is given only implicitly as the solution of a partial differential equation. A first natural question is under which conditions we should expect such solutions to be efficiently approximated in low-rank form. Due to the highly nonlinear nature of the resulting low-rank approximations, a crucial second question is at what expense such approximations can be computed in practice. This article surveys basic construction principles of numerical methods based on low-rank representations as well as the analysis of their convergence and computational complexity.

MSC:

65-XX Numerical analysis
41A46 Approximation by arbitrary nonlinear expressions; widths and entropy
41A63 Multidimensional problems
65D40 Numerical approximation of high-dimensional functions; sparse grids
65F55 Numerical methods for low-rank matrix approximation; matrix compression
65J10 Numerical solutions to equations with linear operators
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms

Software:

ALEA; LOBPCG
Full Text: DOI

References:

[1] Absil, P.-A. and Oseledets, I. V. (2015), Low-rank retractions: A survey and new results, Comput. Optim. Appl.62, 5-29. · Zbl 1334.90202
[2] Absil, P.-A., Mahony, R. and Sepulchre, R. (2008), Optimization Algorithms on Matrix Manifolds, Princeton University Press. · Zbl 1147.65043
[3] Ali, M. and Nouy, A. (2020a), Singular value decomposition in Sobolev spaces, Part I,Z. Anal. Anwend.39, 349-369. · Zbl 1461.46025
[4] Ali, M. and Nouy, A. (2020b), Singular value decomposition in Sobolev spaces, Part II, Z. Anal. Anwend.39, 371-394. · Zbl 1471.46028
[5] Ali, M. and Nouy, A. (2021), Approximation theory of tree tensor networks: Tensorized multivariate functions. Available at arXiv:2101.11932.
[6] Ali, M. and Nouy, A. (2023), Approximation theory of tree tensor networks: Tensorized univariate functions, Constr. Approx. Available at doi: doi:10.1007/s00365-023-09620-w. · Zbl 1531.41030
[7] Ali, M. and Urban, K. (2020), HT-AWGM: A hierarchical Tucker-adaptive wavelet Galerkin method for high-dimensional elliptic problems, Adv. Comput. Math.46, 59. · Zbl 1454.65158
[8] Ammar, A., Chinesta, F. and Falcó, A. (2010), On the convergence of a greedy rank-one update algorithm for a class of linear systems, Arch. Comput. Methods Engrg17, 473-486. · Zbl 1269.65120
[9] Andreev, R. (2013), Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal.33, 242-260. · Zbl 1262.65114
[10] Andreev, R. and Tobler, C. (2015), Multilevel preconditioning and low-rank tensor iteration for space-time simultaneous discretizations of parabolic PDEs, Numer. Linear Algebra Appl22, 317-337. · Zbl 1363.65156
[11] Arnold, A. and Jahnke, T. (2014), On the approximation of high-dimensional differential equations in the hierarchical Tucker format, BIT Numer. Math.54, 305-341. · Zbl 1308.65113
[12] Bachmayr, M. (2012a), Adaptive low-rank wavelet methods and applications to two-electron Schrödinger equations. PhD thesis, RWTH Aachen.
[13] Bachmayr, M. (2012b), Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation, ESAIM Math. Model. Numer. Anal.46, 1337-1362. · Zbl 1276.65075
[14] Bachmayr, M. and Cohen, A. (2017), Kolmogorov widths and low-rank approximations of parametric elliptic PDEs, Math. Comp.86, 701-724. · Zbl 1358.65072
[15] Bachmayr, M. and Dahmen, W. (2015), Adaptive near-optimal rank tensor approximation for high-dimensional operator equations, Found. Comput. Math.15, 839-898. · Zbl 1335.65049
[16] Bachmayr, M. and Dahmen, W. (2016a), Adaptive low-rank methods for problems on Sobolev spaces with error control in \({\text{L}}_2\), ESAIM Math. Model. Numer. Anal.50, 1107-1136. · Zbl 1347.41031
[17] Bachmayr, M. and Dahmen, W. (2016b), Adaptive low-rank methods: Problems on Sobolev spaces, SIAM J. Numer. Anal.54, 744-796. · Zbl 1336.41009
[18] Bachmayr, M. and Dahmen, W. (2020), Adaptive low-rank approximations for operator equations: Accuracy control and computational complexity, in 75 Years of Mathematics of Computation (Brenner, S. C.et al., eds), Vol. 754of Contemporary Mathematics, American Mathematical Society, pp. 1-44. · Zbl 1478.65105
[19] Bachmayr, M. and Faldum, M. (2023), A space-time adaptive low-rank method for high-dimensional parabolic partial differential equations. Available at arXiv:2302.01658.
[20] Bachmayr, M. and Kazeev, V. (2020), Stability of low-rank tensor representations and structured multilevel preconditioning for elliptic PDEs, Found. Comput. Math.20, 1175-1236. · Zbl 1454.65160
[21] Bachmayr, M. and Schneider, R. (2017), Iterative methods based on soft thresholding of hierarchical tensors, Found. Comput. Math.17, 1037-1083. · Zbl 1397.65243
[22] Bachmayr, M., Cohen, A. and Dahmen, W. (2018), Parametric PDEs: Sparse or low-rank approximations?, IMA J. Numer. Anal.38, 1661-1708. · Zbl 1477.65189
[23] Bachmayr, M., Cohen, A., Dũng, D. and Schwab, C. (2017), Fully discrete approximation of parametric and stochastic elliptic PDEs, SIAM J. Numer. Anal.55, 2151-2186. · Zbl 1377.65005
[24] Bachmayr, M., Eisenmann, H., Kieri, E. and Uschmajew, A. (2021a), Existence of dynamical low-rank approximations to parabolic problems, Math. Comp.90, 1799-1830. · Zbl 1482.65136
[25] Bachmayr, M., Götte, M. and Pfeffer, M. (2022), Particle number conservation and block structures in matrix product states, Calcolo59, 24. · Zbl 1490.81099
[26] Bachmayr, M., Nouy, A. and Schneider, R. (2021b), Approximation by tree tensor networks in high dimensions: Sobolev and compositional functions. Available at arXiv:2112.01474. To appear in Pure Appl. Funct. Anal. · Zbl 1524.41083
[27] Bachmayr, M., Schneider, R. and Uschmajew, A. (2016), Tensor networks and hierarchical tensors for the solution of high-dimensional partial differential equations, Found. Comput. Math.16, 1423-1472. · Zbl 1357.65153
[28] Ballani, J. and Grasedyck, L. (2013), A projection method to solve linear systems in tensor format, Numer. Linear Algebra Appl20, 27-43. · Zbl 1289.65049
[29] Ballani, J. and Grasedyck, L. (2015), Hierarchical tensor approximation of output quantities of parameter-dependent PDEs, SIAM/ASA J. Uncertain. Quantif.3, 852-872. · Zbl 1327.65010
[30] Ballani, J., Grasedyck, L. and Kluge, M. (2013), Black box approximation of tensors in hierarchical Tucker format, Linear Algebra Appl.438, 639-657. · Zbl 1260.65037
[31] Bardos, C., Catto, I., Mauser, N. and Trabelsi, S. (2010), Setting and analysis of the multi-configuration time-dependent Hartree-Fock equations, Arch. Ration. Mech. Anal.198, 273-330. · Zbl 1229.35221
[32] Bardos, C., Catto, I., Mauser, N. J. and Trabelsi, S. (2009), Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition, Appl. Math. Lett.22, 147-152. · Zbl 1163.35464
[33] Benedikt, U., Auer, A. A., Espig, M. and Hackbusch, W. (2011), Tensor decomposition in post-Hartree-Fock methods, I: Two-electron integrals and MP2, J. Chem. Phys.134, 054118.
[34] Benedikt, U., Auer, H., Espig, M., Hackbusch, W. and Auer, A. A. (2013a), Tensor representation techniques in post-Hartree-Fock methods: Matrix product state tensor format, Molecular Phys.111, 2398-2413.
[35] Benedikt, U., Böhm, K.-H. and Auer, A. A. (2013b), Tensor decomposition in post-Hartree-Fock methods, II: CCD implementation, J. Chem. Phys.139, 224101.
[36] Benner, P., Cohen, A., Ohlberger, M. and Willcox, K., eds (2017), Model Reduction and Approximation: Theory and Algorithms, Vol. 15of Computational Science &Engineering, SIAM. · Zbl 1378.65010
[37] Beylkin, G. and Mohlenkamp, M. J. (2002), Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci. USA99, 10246-10251. · Zbl 1008.65026
[38] Beylkin, G. and Mohlenkamp, M. J. (2005), Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput.26, 2133-2159. · Zbl 1085.65045
[39] Beylkin, G. and Monzón, L. (2005), On approximation of functions by exponential sums, Appl. Comput. Harmon. Anal.19, 17-48. · Zbl 1075.65022
[40] Beylkin, G. and Monzón, L. (2010), Approximation by exponential sums revisited, Appl. Comput. Harmon. Anal. 28, 131-149. · Zbl 1189.65035
[41] Beylkin, G., Mohlenkamp, M. J. and Pérez, F. (2008), Approximating a wavefunction as an unconstrained sum of Slater determinants, J. Math. Phys.49, 032107. · Zbl 1153.81322
[42] Bigoni, D., Engsig-Karup, A. P. and Marzouk, Y. M. (2016), Spectral tensor-train decomposition, SIAM J. Sci. Comput.38, A2405-A2439. · Zbl 1347.41006
[43] Billaud-Friess, M., Nouy, A. and Zahm, O. (2014), A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems, ESAIM Math. Model. Numer. Anal.48, 1777-1806. · Zbl 1305.65011
[44] Bischoff, F. A. and Valeev, E. F. (2011), Low-order tensor approximations for electronic wave functions: Hartree-Fock method with guaranteed precision, J. Chem. Phys.134, 104104.
[45] Boiveau, T., Ehrlacher, V., Ern, A. and Nouy, A. (2019), Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods, ESAIM Math. Model. Numer. Anal.53, 635-658. · Zbl 1422.65250
[46] Braess, D. (1986), Nonlinear Approximation Theory, Vol. 7 of Springer Series in Computational Mathematics, Springer. · Zbl 0656.41001
[47] Braess, D. and Hackbusch, W. (2005), Approximation of \(1/x\) by exponential sums in \(\left[1,\infty \right)\) , IMA J. Numer. Anal. 25, 685-697. · Zbl 1082.65025
[48] Braess, D. and Hackbusch, W. (2009), On the efficient computation of high-dimensional integrals and the approximation by exponential sums, in Multiscale, Nonlinear and Adaptive Approximation (Devore, R. and Kunoth, A., eds), Springer, pp. 39-74. · Zbl 1190.65036
[49] Bramble, J. H., Pasciak, J. E. and Xu, J. (1990), Parallel multilevel preconditioners, Math. Comp.55, 1-22. · Zbl 0703.65076
[50] Cai, J.-F., Candès, E. J. and Shen, Z. (2010), A singular value thresholding algorithm for matrix completion, SIAM J. Optim.20, 1956-1982. · Zbl 1201.90155
[51] Cancès, E., Ehrlacher, V. and Lelièvre, T. (2011), Convergence of a greedy algorithm for high-dimensional convex nonlinear problems, Math. Models Methods Appl. Sci.21, 2433-2467. · Zbl 1259.65098
[52] Cancès, E., Ehrlacher, V. and Lelièvre, T. (2013), Greedy algorithms for high-dimensional non-symmetric linear problems, ESAIM Proc.41, 95-131. · Zbl 1330.65097
[53] Cancès, E., Ehrlacher, V. and Lelièvre, T. (2014), Greedy algorithms for high-dimensional eigenvalue problems, Constr. Approx.40, 387-423. · Zbl 1310.47025
[54] Ceruti, G. and Lubich, C. (2020), Time integration of symmetric and anti-symmetric low-rank matrices and Tucker tensors, BIT Numer. Math.60, 591-614. · Zbl 1446.65037
[55] Ceruti, G. and Lubich, C. (2022), An unconventional robust integrator for dynamical low-rank approximation, BIT Numer. Math.62, 23-44. · Zbl 1481.65068
[56] Ceruti, G., Kusch, J. and Lubich, C. (2022), A rank-adaptive robust integrator for dynamical low-rank approximation, BIT Numer. Math.62, 1149-1174. · Zbl 1507.65116
[57] Ceruti, G., Lubich, C. and Sulz, D. (2023), Rank-adaptive time integration of tree tensor networks, SIAM J. Numer. Anal.61, 194-222. · Zbl 1511.65064
[58] Chen, Z., Batselier, K., Suykens, J. A. K. and Wong, N. (2017), Parallelized tensor train learning of polynomial classifiers, IEEE Trans. Neural Netw. Learn. Syst.29, 4621-4632.
[59] Chertkov, A. and Oseledets, I. V. (2021), Solution of the Fokker-Planck equation by cross approximation method in the tensor train format, Front. Artif. Intell.4, 668215.
[60] Chinnamsetty, S. R., Espig, M., Khoromskij, B. N., Hackbusch, W. and Flad, H.-J. (2007), Tensor product approximation with optimal rank in quantum chemistry, J. Chem. Phys.127, 084110.
[61] Cho, H., Venturi, D. and Karniadakis, G. E. (2016), Numerical methods for high-dimensional probability density function equations, J. Comput. Phys.305, 817-837. · Zbl 1349.65046
[62] Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C. and Phan, H. A. (2015), Tensor decompositions for signal processing applications: From two-way to multiway component analysis, IEEE Signal Process. Mag.32, 145-163.
[63] Cohen, A. (2003), Numerical Analysis of Wavelet Methods, Vol. 32 of Studies in Mathematics and its Applications, North-Holland. · Zbl 1038.65151
[64] Cohen, A. and Devore, R. (2015), Approximation of high-dimensional parametric PDEs, Acta Numer.24, 1-159. · Zbl 1320.65016
[65] Cohen, A., Dahmen, W. and Devore, R. (2001), Adaptive wavelet methods for elliptic operator equations: Convergence rates, Math. Comp.70, 27-75. · Zbl 0980.65130
[66] Cohen, A., Dahmen, W. and Devore, R. (2002), Adaptive wavelet methods, II: Beyond the elliptic case, Found. Comput. Math.2, 203-245. · Zbl 1025.65056
[67] Cohen, A., Daubechies, I. and Feauveau, J.-C. (1992), Biorthogonal bases of compactly supported wavelets, Commun. Pure Appl. Math.45, 485-560. · Zbl 0776.42020
[68] Cohen, A., Devore, R. and Schwab, C. (2010), Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math. 10, 615-646. · Zbl 1206.60064
[69] Cohen, A., Devore, R. and Schwab, C. (2011), Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s, Anal. Appl. (Singap.)9, 11-47. · Zbl 1219.35379
[70] Conte, D. (2020), Dynamical low-rank approximation to the solution of parabolic differential equations, Appl. Numer. Math.156, 377-384. · Zbl 1441.37103
[71] Conte, D. and Lubich, C. (2010), An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics, M2AN Math. Model. Numer. Anal.44, 759-780. · Zbl 1192.81125
[72] Crosswhite, G. M. and Bacon, D. (2008), Finite automata for caching in matrix product algorithms, Phys. Rev. A78, 012356.
[73] Da Silva, C. and Herrmann, F. J. (2015), Optimization on the hierarchical Tucker manifold: Applications to tensor completion, Linear Algebra Appl.481, 131-173. · Zbl 1317.65136
[74] Dahlke, S., Fornasier, M. and Raasch, T. (2012), Multilevel preconditioning and adaptive sparse solution of inverse problems, Math. Comp.81, 419-446. · Zbl 1239.65037
[75] Dahmen, W. (1997), Wavelet and multiscale methods for operator equations, Acta Numer.6, 55-228. · Zbl 0884.65106
[76] Dahmen, W., Devore, R., Grasedyck, L. and Süli, E. (2016), Tensor-sparsity of solutions to high-dimensional elliptic partial differential equations, Found. Comput. Math.16, 813-874. · Zbl 1365.65243
[77] Dahmen, W., Kunoth, A. and Urban, K. (1999), Biorthogonal spline wavelets on the interval: Stability and moment conditions, Appl. Comput. Harmon. Anal.6, 132-196. · Zbl 0922.42021
[78] Daubechies, I. (1988), Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math.41, 909-996. · Zbl 0644.42026
[79] Daubechies, I. (1992), Ten Lectures on Wavelets, Vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM. · Zbl 0776.42018
[80] De Lathauwer, L., De Moor, B. and Vandewalle, J. (2000), A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl.21, 1253-1278. · Zbl 0962.15005
[81] De Launey, W. and Seberry, J. (1994), The strong Kronecker product, J. Combin. Theory Ser. A66, 192-213. · Zbl 0802.05019
[82] De Silva, V. and Lim, L.-H. (2008), Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl.30, 1084-1127. · Zbl 1167.14038
[83] Defant, A. and Floret, K. (1993), Tensor Norms and Operator Ideals, Vol. 176 of North-Holland Mathematics Studies, North-Holland. · Zbl 0774.46018
[84] Dektor, A., Rodgers, A. and Venturi, D. (2021), Rank-adaptive tensor methods for highdimensional nonlinear pdes, J. Sci. Comput.88, 36. · Zbl 1501.65032
[85] Devore, R. A. (1998), Nonlinear approximation, Acta Numer.7, 51-150. · Zbl 0931.65007
[86] Dijkema, T. J., Schwab, C. and Stevenson, R. (2009), An adaptive wavelet method for solving high-dimensional elliptic PDEs, Constr. Approx.30, 423-455. · Zbl 1205.65313
[87] Dirac, P. A. M. (1930), Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Phil. Soc.26, 376-385. · JFM 56.0751.04
[88] Dolgov, S. V. and Khoromskij, B. N. (2013), Two-level QTT-Tucker format for optimized tensor calculus, SIAM J. Matrix Anal. Appl.34, 593-623. · Zbl 1273.65169
[89] Dolgov, S. V. and Savostyanov, D. V. (2014), Alternating minimal energy methods for linear systems in higher dimensions, SIAM J. Sci. Comput.36, A2248-A2271. · Zbl 1307.65035
[90] Dolgov, S. V. and Scheichl, R. (2019), A hybrid alternating least squares-TT-cross algorithm for parametric PDEs, SIAM/ASA J. Uncertain. Quantif.7, 260-291. · Zbl 1418.65170
[91] Dolgov, S. V. and Vejchodský, T. (2021), Guaranteed a posteriori error bounds for low-rank tensor approximate solutions, IMA J. Numer. Anal.41, 1240-1266. · Zbl 1511.65121
[92] Dolgov, S. V., Khoromskij, B. N. and Oseledets, I. V. (2012), Fast solution of parabolic problems in the tensor train/quantized tensor train format with initial application to the Fokker-Planck equation, SIAM J. Sci. Comput.34, A3016-A3038. · Zbl 1259.82075
[93] Dolgov, S. V., Khoromskij, B. N., Oseledets, I. V. and Savostyanov, D. V. (2014), Computation of extreme eigenvalues in higher dimensions using block tensor train format, Comput. Phys. Commun.185, 1207-1216. · Zbl 1344.65043
[94] Dolgov, S. V., Kressner, D. and Strössner, C. (2021), Functional Tucker approximation using Chebyshev interpolation, SIAM J. Sci. Comput.43, A2190-A2210. · Zbl 1510.65033
[95] Dölz, J., Egger, H. and Schlottbom, M. (2021), A model reduction approach for inverse problems with operator valued data, Numer. Math148, 889-917. · Zbl 1473.65067
[96] Donovan, G. C., Geronimo, J. S. and Hardin, D. P. (1996), Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets, SIAM J. Math. Anal.27, 1791-1815. · Zbl 0857.42023
[97] Donovan, G. C., Geronimo, J. S. and Hardin, D. P. (1999), Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets, SIAM J. Math. Anal.30, 1029-1056. · Zbl 0932.42021
[98] Dunnett, A. J. and Chin, A. W. (2021), Efficient bond-adaptive approach for finite-temperature open quantum dynamics using the one-site time-dependent variational principle for matrix product states, Phys. Rev. B104, 214302.
[99] Eckart, C. and Young, G. (1936), The approximation of one matrix by another of lower rank, Psychometrika1, 211-218. · JFM 62.1075.02
[100] Eigel, M., Marschall, M., Pfeffer, M. and Schneider, R. (2020), Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations, Numer. Math145, 655-692. · Zbl 1439.65160
[101] Eigel, M., Pfeffer, M. and Schneider, R. (2017), Adaptive stochastic Galerkin FEM with hierarchical tensor representations, Numer. Math136, 765-803. · Zbl 1397.65262
[102] Einkemmer, L. and Lubich, C. (2018), A low-rank projector-splitting integrator for the Vlasov-Poisson equation, SIAM J. Sci. Comput.40, B1330-B1360. · Zbl 1408.35187
[103] Einkemmer, L. and Lubich, C. (2019), A quasi-conservative dynamical low-rank algorithm for the Vlasov equation, SIAM J. Sci. Comput.41, B1061-B1081. · Zbl 1428.82058
[104] Eisert, J., Cramer, M. and Plenio, M. B. (2010), Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys.82, 277-306. · Zbl 1205.81035
[105] Fackeldey, K., Oster, M., Sallandt, L. and Schneider, R. (2022), Approximative policy iteration for exit time feedback control problems driven by stochastic differential equations using tensor train format, Multiscale Model. Simul20, 379-403. · Zbl 1492.93196
[106] Falcó, A. and Hackbusch, W. (2012), On minimal subspaces in tensor representations, Found. Comput. Math12, 765-803. · Zbl 1260.15040
[107] Falcó, A. and Nouy, A. (2011), A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach, J. Math. Anal. Appl.376, 469-480. · Zbl 1210.65009
[108] Falcó, A. and Nouy, A. (2012), Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces, Numer. Math121, 503-530. · Zbl 1264.65095
[109] Falcó, A., Hackbusch, W. and Nouy, A. (2019), On the Dirac-Frenkel variational principle on tensor Banach spaces, Found. Comput. Math.19, 159-204. · Zbl 1427.46013
[110] Falcó, A., Hackbusch, W. and Nouy, A. (2021), Tree-based tensor formats, SeMA J.78, 159-173. · Zbl 1479.15026
[111] Faulstich, F. M., Laestadius, A., Legeza, O., Schneider, R. and Kvaal, S. (2019), Analysis of the tailored coupled-cluster method in quantum chemistry, SIAM J. Numer. Anal.57, 2579-2607. · Zbl 1435.81069
[112] Feppon, F. and Lermusiaux, P. F. J. (2018), A geometric approach to dynamical model order reduction, SIAM J. Matrix Anal. Appl.39, 510-538. · Zbl 1395.65111
[113] Feppon, F. and Lermusiaux, P. F. J. (2019), The extrinsic geometry of dynamical systems tracking nonlinear matrix projections, SIAM J. Matrix Anal. Appl.40, 814-844. · Zbl 07099843
[114] Frenkel, J. (1934), Wave Mechanics: Advanced General Theory, Clarendon Press. · Zbl 0013.08702
[115] Friesecke, G. and Graswald, B. R. (2022), Two-electron wavefunctions are matrix product states with bond dimension three, J. Math. Phys.63, 091901. · Zbl 1509.81624
[116] Friesecke, G., Graswald, B. R. and Legeza, Ö. (2022), Exact matrix product state representation and convergence of a fully correlated electronic wavefunction in the infinite-basis limit, Phys. Rev. B105, 165144.
[117] Gantumur, T., Harbrecht, H. and Stevenson, R. (2007), An optimal adaptive wavelet method without coarsening of the iterands, Math. Comp.76, 615-629. · Zbl 1115.41023
[118] Gao, B. and Absil, P.-A. (2022), A Riemannian rank-adaptive method for low-rank matrix completion, Comput. Optim. Appl.81, 67-90. · Zbl 1484.90110
[119] Gavrilyuk, I. and Khoromskij, B. N. (2019), Quasi-optimal rank-structured approximation to multidimensional parabolic problems by Cayley transform and Chebyshev interpolation, Comput. Methods Appl. Math19, 55-71. · Zbl 1420.65056
[120] Gavrilyuk, I. P., Hackbusch, W. and Khoromskij, B. N. (2005), Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems, Computing74, 131-157. · Zbl 1071.65032
[121] Golub, G. H. and Kahan, W. (1965), Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal.2, 205-224. · Zbl 0194.18201
[122] Golub, G. H. and Reinsch, C. (1970), Handbook Series Linear Algebra: Singular value decomposition and least squares solutions, Numer. Math14, 403-420. · Zbl 0181.17602
[123] Gorodetsky, A., Karaman, S. and Marzouk, Y. (2019), A continuous analogue of the tensor-train decomposition, Comput. Methods Appl. Mech. Engrg347, 59-84. · Zbl 1440.65054
[124] Grasedyck, L. (2004), Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing72, 247-265. · Zbl 1058.65036
[125] Grasedyck, L. (2009/10), Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl.31, 2029-2054. · Zbl 1210.65090
[126] Grasedyck, L. (2010), Polynomial approximation in hierarchical Tucker format by vector-tensorization. DFG SPP 1324 Preprint 43.
[127] Grasedyck, L. and Hackbusch, W. (2011), An introduction to hierarchical \(( \text{\mathscr{H}} \) -) rank and TT-rank of tensors with examples, Comput. Methods Appl. Math. 11, 291-304. · Zbl 1283.15075
[128] Grasedyck, L., Kressner, D. and Tobler, C. (2013), A literature survey of low-rank tensor approximation techniques, GAMM-Mitt.36, 53-78. · Zbl 1279.65045
[129] Graswald, B. R. and Friesecke, G. (2021), Electronic wavefunction with maximally entangled mps representation, Europ. Phys. J. D75, 1-4.
[130] Griebel, M. and Harbrecht, H. (2014), Approximation of bi-variate functions: Singular value decomposition versus sparse grids, IMA J. Numer. Anal.34, 28-54. · Zbl 1287.65009
[131] Griebel, M. and Harbrecht, H. (2019), Singular value decomposition versus sparse grids: Refined complexity estimates, IMA J. Numer. Anal.39, 1652-1671. · Zbl 1496.65020
[132] Griebel, M. and Harbrecht, H. (2023), Analysis of tensor approximation schemes for continuous functions, Found. Comput. Math23, 219-240. · Zbl 1531.41026
[133] Griebel, M., Harbrecht, H. and Schneider, R. (2022), Low-rank approximation of continuous functions in Sobolev spaces with dominating mixed smoothness. Available at arXiv:2203.04100. · Zbl 1541.65027
[134] Gu, M. and Eisenstat, S. C. (1995), A divide-and-conquer algorithm for the bidiagonal SVD, SIAM J. Matrix Anal. Appl.16, 79-92. · Zbl 0821.65019
[135] Hackbusch, W. (2005), Entwicklungen nach Exponentialsummen. Technical Report 4, MPI MIS Leipzig.
[136] Hackbusch, W. (2011), Tensorisation of vectors and their efficient convolution, Numer. Math.119, 465-488. · Zbl 1236.15054
[137] Hackbusch, W. (2014), Numerical tensor calculus, Acta Numer.23, 651-742. · Zbl 1396.65091
[138] Hackbusch, W. (2015a), Hierarchical Matrices: Algorithms and Analysis, Vol. 49 of Springer Series in Computational Mathematics, Springer. · Zbl 1336.65041
[139] Hackbusch, W. (2015b), Solution of linear systems in high spatial dimensions, Comput. Vis. Sci.17, 111-118. · Zbl 1388.65032
[140] Hackbusch, W. (2018), On the representation of symmetric and antisymmetric tensors, in Contemporary Computational Mathematics: A Celebration of the 80th Birthday of Ian Sloan (Dick, J.et al., eds), Springer, pp. 483-515. · Zbl 1405.15034
[141] Hackbusch, W. (2019), Tensor Spaces and Numerical Tensor Calculus, Vol. 56 of Springer Series in Computational Mathematics, second edition, Springer. · Zbl 1534.65004
[142] Hackbusch, W. and Khoromskij, B. N. (2006a), Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators, I: Separable approximation of multi-variate functions, Computing76, 177-202. · Zbl 1087.65049
[143] Hackbusch, W. and Khoromskij, B. N. (2006b), Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators, II: HKT representation of certain operators, Computing76, 203-225. · Zbl 1087.65050
[144] Hackbusch, W. and Kühn, S. (2009), A new scheme for the tensor representation, J. Fourier Anal. Appl.15, 706-722. · Zbl 1188.15022
[145] Hackbusch, W., Khoromskij, B. N. and Tyrtyshnikov, E. E. (2008), Approximate iterations for structured matrices, Numer. Math109, 365-383. · Zbl 1144.65029
[146] Hackbusch, W., Khoromskij, B. N., Sauter, S. and Tyrtyshnikov, E. E. (2012), Use of tensor formats in elliptic eigenvalue problems, Numer. Linear Algebra Appl. 19, 133-151. · Zbl 1274.35252
[147] Haegeman, J., Lubich, C., Oseledets, I., Vandereycken, B. and Verstraete, F. (2016), Unifying time evolution and optimization with matrix product states, Phys. Rev. B94, 165116.
[148] Haegeman, J., Osborne, T. J. and Verstraete, F. (2013), Post-matrix product state methods: To tangent space and beyond, Phys. Rev. B88, 075133.
[149] Helgaker, T., Jørgensen, P. and Olsen, J. (2000), Molecular Electronic-Structure Theory, Wiley.
[150] Helmke, U. and Shayman, M. A. (1995), Critical points of matrix least squares distance functions, Linear Algebra Appl.215, 1-19. · Zbl 0816.15026
[151] Hesthaven, J. S., Rozza, G. and Stamm, B. (2016), Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics, Springer; BCAM Basque Center for Applied Mathematics, Bilbao. · Zbl 1329.65203
[152] Hillar, C. J. and Lim, L.-H. (2013), Most tensor problems are NP-hard, J. Assoc. Comput. Mach.60, Art. 45, 39. · Zbl 1281.68126
[153] Hitchcock, F. L. (1927), The expression of a tensor or a polyadic as a sum of products, J. Math. Phys.6, 164-189. · JFM 53.0095.01
[154] Hitchcock, F. L. (1928), Multiple invariants and generalized rank of a p-way matrix or tensor, J. Math. Phys. 7, 39-79. · JFM 53.0097.01
[155] Holtz, S., Rohwedder, T. and Schneider, R. (2012a), The alternating linear scheme for tensor optimization in the tensor train format, SIAM J. Sci. Comput.34, A683-A713. · Zbl 1252.15031
[156] Holtz, S., Rohwedder, T. and Schneider, R. (2012b), On manifolds of tensors of fixed TT-rank, Numer. Math120, 701-731. · Zbl 1242.15022
[157] Janzamin, M., Ge, R., Kossaifi, J., Anandkumar, A.et al. (2019), Spectral learning on matrices and tensors, Found. Trends Mach. Learn. 12, 393-536. · Zbl 1436.68004
[158] Kahlbacher, M. and Volkwein, S. (2007), Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems, Discuss. Math. Differ. Incl. Control Optim27, 95-117. · Zbl 1156.35020
[159] Kazashi, Y. and Nobile, F. (2021), Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval, Stoch. Partial Differ. Equ. Anal. Comput9, 603-629. · Zbl 1480.35414
[160] Kazashi, Y., Nobile, F. and Vidličková, E. (2021), Stability properties of a projector-splitting scheme for dynamical low rank approximation of random parabolic equations, Numer. Math149, 973-1024. · Zbl 07437243
[161] Kazeev, V. A. (2015), Quantized tensor structured finite elements for second-order elliptic PDEs in two dimensions. PhD thesis, ETH Zürich. · Zbl 1382.65409
[162] Kazeev, V. A. and Khoromskij, B. N. (2012), Low-rank explicit QTT representation of the Laplace operator and its inverse, SIAM J. Matrix Anal. Appl.33, 742-758. · Zbl 1268.15025
[163] Kazeev, V. A. and Schwab, C. (2018), Quantized tensor-structured finite elements for second-order elliptic PDEs in two dimensions, Numer. Math. 138, 133-190. · Zbl 1382.65409
[164] Kazeev, V. A., Khoromskij, B. N. and Tyrtyshnikov, E. E. (2013a), Multilevel Toeplitz matrices generated by tensor-structured vectors and convolution with logarithmic complexity, SIAM J. Sci. Comput.35, A1511-A1536. · Zbl 1275.15018
[165] Kazeev, V. A., Oseledets, I. V., Rakhuba, M. and Schwab, C. (2017), QTT-finite-element approximation for multiscale problems, I: Model problems in one dimension, Adv. Comput. Math.43, 411-442. · Zbl 1375.65152
[166] Kazeev, V. A., Oseledets, I. V., Rakhuba, M. V. and Schwab, C. (2022), Quantized tensor FEM for multiscale problems: Diffusion problems in two and three dimensions, Multiscale Model. Simul20, 893-935. · Zbl 1496.65220
[167] Kazeev, V. A., Reichmann, O. and Schwab, C. (2013b), Low-rank tensor structure of linear diffusion operators in the TT and QTT formats, Linear Algebra Appl.438, 4204-4221. · Zbl 1281.15024
[168] Keller, S., Dolfi, M., Troyer, M. and Reiher, M. (2015), An efficient matrix product operator representation of the quantum chemical Hamiltonian, J. Chem. Phys.143, 244118.
[169] Khoromskaia, V. and Khoromskij, B. N. (2015), Tensor numerical methods in quantum chemistry: From Hartree-Fock to excitation energies, Phys. Chem. Chem. Phys.17, 31491-31509.
[170] Khoromskaia, V. and Khoromskij, B. N. (2016), Fast tensor method for summation of long-range potentials on 3D lattices with defects, Numer. Linear Algebra Appl23, 249-271. · Zbl 1413.65141
[171] Khoromskaia, V. and Khoromskij, B. N. (2018), Tensor Numerical Methods in Quantum Chemistry, De Gruyter. · Zbl 1503.65003
[172] Khoromskaia, V., Khoromskij, B. N. and Schneider, R. (2013), Tensor-structured factorized calculation of two-electron integrals in a general basis, SIAM J. Sci. Comput.35, A987-A1010. · Zbl 1266.65069
[173] Khoromskij, B. N. (2009), Tensor-structured preconditioners and approximate inverse of elliptic operators in \({R}^d\) , Constr. Approx30, 599-620. · Zbl 1185.65051
[174] Khoromskij, B. N. (2011), \(O\left(d\log N\right)\) -quantics approximation of N-d tensors in high-dimensional numerical modeling, Constr. Approx. 34, 257-280. · Zbl 1228.65069
[175] Khoromskij, B. N. (2015), Tensor numerical methods for multidimensional PDEs: Theoretical analysis and initial applications, ESAIM Proc. Surveys48, 1-28. · Zbl 1382.65461
[176] Khoromskij, B. N. (2018), Tensor Numerical Methods in Scientific Computing, Vol. 19 of Radon Series on Computational and Applied Mathematics, De Gruyter. · Zbl 1405.65002
[177] Khoromskij, B. N. and Miao, S. (2014), Superfast wavelet transform using quantics-TT approximation, I: Application to Haar wavelets, Comput. Methods Appl. Math.14, 537-553. · Zbl 1304.65139
[178] Khoromskij, B. N. and Oseledets, I. V. (2010), Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs, Comput. Methods Appl. Math10, 376-394. · Zbl 1283.65039
[179] Khoromskij, B. N. and Oseledets, I. V. (2011), QTT approximation of elliptic solution operators in higher dimensions, Russian J. Numer. Anal. Math. Modelling26, 303-322. · Zbl 1221.65288
[180] Khoromskij, B. N. and Schwab, C. (2011), Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs, SIAM J. Sci. Comput.33, 364-385. · Zbl 1243.65009
[181] Khoromskij, B. N., Khoromskaia, V. and Flad, H.-J. (2011), Numerical solution of the Hartree-Fock equation in multilevel tensor-structured format, SIAM J. Sci. Comput.33, 45-65. · Zbl 1227.65113
[182] Khoromskij, B. N., Khoromskaia, V., Chinnamsetty, S. R. and Flad, H.-J. (2009), Tensor decomposition in electronic structure calculations on 3D Cartesian grids, J. Comput. Phys.228, 5749-5762. · Zbl 1171.82017
[183] Kieri, E. and Vandereycken, B. (2019), Projection methods for dynamical low-rank approximation of high-dimensional problems, Comput. Methods Appl. Math19, 73-92. · Zbl 1448.65064
[184] Kieri, E., Lubich, C. and Walach, H. (2016), Discretized dynamical low-rank approximation in the presence of small singular values, SIAM J. Numer. Anal.54, 1020-1038. · Zbl 1336.65119
[185] Koch, O. and Lubich, C. (2007a), Dynamical low-rank approximation, SIAM J. Matrix Anal. Appl.29, 434-454. · Zbl 1145.65031
[186] Koch, O. and Lubich, C. (2007b), Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics, M2AN Math. Model. Numer. Anal.41, 315-331. · Zbl 1135.81380
[187] Koch, O. and Lubich, C. (2010), Dynamical tensor approximation, SIAM J. Matrix Anal. Appl.31, 2360-2375. · Zbl 1214.15017
[188] Koch, O. and Lubich, C. (2011), Variational-splitting time integration of the multi-configuration time-dependent Hartree-Fock equations in electron dynamics, IMA J. Numer. Anal.31, 379-395. · Zbl 1218.81040
[189] Kolda, T. G. and Bader, B. W. (2009), Tensor decompositions and applications, SIAM Rev.51, 455-500. · Zbl 1173.65029
[190] Kressner, D. and Tobler, C. (2011a), Low-rank tensor Krylov subspace methods for parametrized linear systems, SIAM J. Matrix Anal. Appl.32, 1288-1316. · Zbl 1237.65034
[191] Kressner, D. and Tobler, C. (2011b), Preconditioned low-rank methods for high-dimensional elliptic PDE eigenvalue problems, Comput. Methods Appl. Math11, 363-381. · Zbl 1283.65025
[192] Kressner, D. and Uschmajew, A. (2016), On low-rank approximability of solutions to high-dimensional operator equations and eigenvalue problems, Linear Algebra Appl.493, 556-572. · Zbl 1336.65093
[193] Kressner, D., Steinlechner, M. and Uschmajew, A. (2014a), Low-rank tensor methods with subspace correction for symmetric eigenvalue problems, SIAM J. Sci. Comput.36, A2346-A2368. · Zbl 1307.65040
[194] Kressner, D., Steinlechner, M. and Vandereycken, B. (2014b), Low-rank tensor completion by Riemannian optimization, BIT Numer. Math.54, 447-468. · Zbl 1300.65040
[195] Kressner, D., Steinlechner, M. and Vandereycken, B. (2016), Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure, SIAM J. Sci. Comput.38, A2018-A2044. · Zbl 1382.65089
[196] Krumnow, C., Pfeffer, M. and Uschmajew, A. (2021), Computing eigenspaces with low rank constraints, SIAM J. Sci. Comput.43, A586-A608. · Zbl 1462.65039
[197] Krumnow, C., Veis, L., Legeza, O. and Eisert, J. (2016), Fermionic orbital optimization in tensor network states, Phys. Rev. Lett.117, 210402.
[198] Kühn, S. (2012), Hierarchische Tensordarstellung. PhD thesis, Universität Leipzig.
[199] Landsberg, J. M. (2012), Tensors: Geometry and Applications, American Mathematical Society. · Zbl 1238.15013
[200] Landsberg, J. M., Qi, Y. and Ye, K. (2012), On the geometry of tensor network states, Quantum Inf. Comput12, 346-354. · Zbl 1268.81035
[201] Lee, K. and Elman, H. C. (2017), A preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equations, SIAM J. Sci. Comput.39, S828-S850. · Zbl 1373.60126
[202] Light, W. A. and Cheney, E. W. (1985), Approximation Theory in Tensor Product Spaces, Vol. 1169 of Lecture Notes in Mathematics, Springer. · Zbl 0575.41001
[203] Lim, L.-H. (2021), Tensors in computations, Acta Numer.30, 555-764. · Zbl 1512.65079
[204] Lubich, C. (2005), On variational approximations in quantum molecular dynamics, Math. Comp.74, 765-779. · Zbl 1059.81188
[205] Lubich, C. (2008), From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS). · Zbl 1160.81001
[206] Lubich, C. (2015), Time integration in the multiconfiguration time-dependent Hartree method of molecular quantum dynamics, Appl. Math. Res. Express. AMRX2015, 311-328. · Zbl 1331.35290
[207] Lubich, C. and Oseledets, I. V. (2014), A projector-splitting integrator for dynamical low-rank approximation, BIT Numer. Math.54, 171-188. · Zbl 1314.65095
[208] Lubich, C., Oseledets, I. V. and Vandereycken, B. (2015), Time integration of tensor trains, SIAM J. Numer. Anal.53, 917-941. · Zbl 1312.65114
[209] Lubich, C., Rohwedder, T., Schneider, R. and Vandereycken, B. (2013), Dynamical approximation by hierarchical Tucker and tensor-train tensors, SIAM J. Matrix Anal. Appl.34, 470-494. · Zbl 1391.15087
[210] Marcati, C., Rakhuba, M. and Schwab, C. (2022a), Tensor rank bounds for point singularities in \({R}^3\) , Adv. Comput. Math.48, 18. · Zbl 1487.35019
[211] Marcati, C., Rakhuba, M. and Ulander, J. E. M. (2022b), Low-rank tensor approximation of singularly perturbed boundary value problems in one dimension, Calcolo59, 2. · Zbl 1483.65067
[212] Markeeva, L., Tsybulin, I. and Oseledets, I. V. (2021), QTT-isogeometric solver in two dimensions, J. Comput. Phys.424, 109835. · Zbl 07508443
[213] Matthies, H. G. and Zander, E. (2012), Solving stochastic systems with low-rank tensor compression, Linear Algebra Appl.436, 3819-3838. · Zbl 1241.65016
[214] Meyer, H.-D., Gatti, F. and Worth, G. A. (2009), Multidimensional Quantum Dynamics:MCTDH Theory and Applications, Wiley.
[215] Meyer, H.-D., Manthe, U. and Cederbaum, L. S. (1990), The multi-configurational time-dependent Hartree approach, Chem. Phys. Lett.165, 73-78.
[216] Michel, B. and Nouy, A. (2022), Learning with tree tensor networks: Complexity estimates and model selection, Bernoulli28, 910-936. · Zbl 07526570
[217] Mohlenkamp, M. J. (2010), A center-of-mass principle for the multiparticle Schrödinger equation, J. Math. Phys.51, 022112. · Zbl 1309.81083
[218] Moreau, J.-J. (1965), Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France93, 273-299. · Zbl 0136.12101
[219] Murg, V., Verstraete, F., Legeza, O. and Noack, R. M. (2010), Simulating strongly correlated quantum systems with tree tensor networks, Phys. Rev. B82, 205105.
[220] Musharbash, E. and Nobile, F. (2018), Dual dynamically orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions, J. Comput. Phys.354, 135-162. · Zbl 1380.35171
[221] Musharbash, E., Nobile, F. and Vidličková, E. (2020), Symplectic dynamical low rank approximation of wave equations with random parameters, BIT Numer. Math.60, 1153-1201. · Zbl 1479.65009
[222] Musharbash, E., Nobile, F. and Zhou, T. (2015), Error analysis of the dynamically orthogonal approximation of time dependent random PDEs, SIAM J. Sci. Comput.37, A776-A810. · Zbl 1320.65149
[223] Novikov, A., Trofimov, M. and Oseledets, I. (2018), Exponential machines, Bull. Pol. Acad. Sci. Math66, 789-797.
[224] Orús, R. (2014), A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Ann. Phys.349, 117-158. · Zbl 1343.81003
[225] Oseledets, I. V. (2009a), Approximation of matrices with logarithmic number of parameters, Dokl. Math.80, 653-654. · Zbl 1181.65065
[226] Oseledets, I. V. (2009b), On a new tensor decomposition, Dokl. Akad. Nauk427, 168-169. In Russian; English translation in Dokl. Math. 80, 495-496 (2009). · Zbl 1183.15023
[227] Oseledets, I. V. (2011a), DMRG approach to fast linear algebra in the TT-format, Comput. Methods Appl. Math11, 382-393. · Zbl 1283.15041
[228] Oseledets, I. V. (2011b), Tensor-train decomposition, SIAM J. Sci. Comput.33, 2295-2317. · Zbl 1232.15018
[229] Oseledets, I. V. (2013), Constructive representation of functions in low-rank tensor formats, Constr. Approx.37, 1-18. · Zbl 1282.15021
[230] Oseledets, I. V. and Dolgov, S. V. (2012), Solution of linear systems and matrix inversion in the TT-format, SIAM J. Sci. Comput.34, A2718-A2739. · Zbl 1259.65071
[231] Oseledets, I. V. and Tyrtyshnikov, E. E. (2009a), Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput.31, 3744-3759. · Zbl 1200.65028
[232] Oseledets, I. V. and Tyrtyshnikov, E. E. (2009b), Recursive decomposition of multidimensional tensors, Dokl. Akad. Nauk427, 14-16. In Russian; English translation in Dokl. Math. 80, 460-462 (2009). · Zbl 1183.15024
[233] Oseledets, I. V. and Tyrtyshnikov, E. E. (2010), TT-cross approximation for multidimensional arrays, Linear Algebra Appl.432, 70-88. · Zbl 1183.65040
[234] Oseledets, I. V., Rakhuba, M. V. and Uschmajew, A. (2018), Alternating least squares as moving subspace correction, SIAM J. Numer. Anal.56, 3459-3479. · Zbl 1417.65134
[235] Oster, M., Sallandt, L. and Schneider, R. (2022), Approximating optimal feedback controllers of finite horizon control problems using hierarchical tensor formats, SIAM J. Sci. Comput.44, B746-B770. · Zbl 1491.49021
[236] Ostermann, A., Piazzola, C. and Walach, H. (2019), Convergence of a low-rank Lie-Trotter splitting for stiff matrix differential equations, SIAM J. Numer. Anal.57, 1947-1966. · Zbl 1420.65072
[237] Parlett, B. N. (1998), The Symmetric Eigenvalue Problem, Vol. 20 of Classics in Applied Mathematics, SIAM. Corrected reprint of the 1980 original. · Zbl 0885.65039
[238] Pfeffer, M. (2018), Tensor methods for the numerical solution of high-dimensional parametric partial differential equations. PhD thesis, Technische UniversitätBerlin.
[239] Primbs, M. (2010), New stable biorthogonal spline-wavelets on the interval, Results Math.57, 121-162. · Zbl 1190.42021
[240] Prud’Homme, C. and Patera, A. T. (2004), Reduced-basis output bounds for approximately parameterized elliptic coercive partial differential equations, Comput. Vis. Sci6, 147-162. · Zbl 1064.65140
[241] Rakhuba, M. (2021), Robust alternating direction implicit solver in quantized tensor formats for a three-dimensional elliptic PDE, SIAM J. Sci. Comput.43, A800-A827. · Zbl 1465.65122
[242] Rakhuba, M., Novikov, A. and Oseledets, I. V. (2019), Low-rank Riemannian eigensolver for high-dimensional Hamiltonians, J. Comput. Phys.396, 718-737. · Zbl 1452.65070
[243] Rakhuba, M. V. and Oseledets, I. V. (2016), Grid-based electronic structure calculations: The tensor decomposition approach, J. Comput. Phys.312, 19-30. · Zbl 1351.82040
[244] Rakhuba, M. V. and Oseledets, I. V. (2018), Jacobi-Davidson method on low-rank matrix manifolds, SIAM J. Sci. Comput.40, A1149-A1170. · Zbl 1386.65113
[245] Richter, L., Sallandt, L. and Nüsken, N. (2021), Solving high-dimensional parabolic PDEs using the tensor train format, in 38th International Conference on Machine Learning, Vol. 139 of Proceedings of Machine Learning Research, PMLR, pp. 8998-9009.
[246] Rohwedder, T. and Uschmajew, A. (2013), On local convergence of alternating schemes for optimization of convex problems in the tensor train format, SIAM J. Numer. Anal.51, 1134-1162. · Zbl 1273.65088
[247] Rozza, G., Huynh, D. B. P. and Patera, A. T. (2008), Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics, Arch. Comput. Methods Engrg15, 229-275. · Zbl 1304.65251
[248] Ryan, R. A. (2002), Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer. · Zbl 1090.46001
[249] Sapsis, T. P. and Lermusiaux, P. F. (2009), Dynamically orthogonal field equations for continuous stochastic dynamical systems, Phys. D238, 2347-2360. · Zbl 1180.37119
[250] Schmidt, E. (1907), Zur Theorie der linearen und nichtlinearen Integralgleichungen, Math. Ann.63, 433-476. · JFM 38.0377.02
[251] and Uschmajew, A. (2014), Approximation rates for the hierarchical tensor format in periodic Sobolev spaces, J. Complexity30, 56-71. · Zbl 1329.41033
[252] and Uschmajew, A. (2015), Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality, SIAM J. Optim.25, 622-646. · Zbl 1355.65079
[253] Schollwöck, U. (2011), The density-matrix renormalization group in the age of matrix product states, Ann. Phys326, 96-192. · Zbl 1213.81178
[254] Scholz, S. and Yserentant, H. (2017), On the approximation of electronic wavefunctions by anisotropic Gauss and Gauss-Hermite functions, Numer. Math136, 841-874. · Zbl 1397.81439
[255] Schwab, C. and Gittelson, C. J. (2011), Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs, Acta Numer.20, 291-467. · Zbl 1269.65010
[256] Schwab, C. and Stevenson, R. (2009), Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp.78, 1293-1318. · Zbl 1198.65249
[257] Shi, Y.-Y., Duan, L.-M. and Vidal, G. (2006), Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A74, 022320.
[258] Sidiropoulos, N. D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E. E. and Faloutsos, C. (2017), Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process.65, 3551-3582. · Zbl 1415.94232
[259] Signoretto, M., Dinh, Q. Tran, De Lathauwer, L. and Suykens, J. A. K. (2014), Learning with tensors: A framework based on convex optimization and spectral regularization, Mach. Learn94, 303-351. · Zbl 1319.68191
[260] Singh, S., Pfeifer, R. N. C. and Vidal, G. (2011), Tensor network states and algorithms in the presence of a global U(1) symmetry, Phys. Rev. B 83, 115125.
[261] Steinlechner, M. (2016), Riemannian optimization for high-dimensional tensor completion, SIAM J. Sci. Comput.38, S461-S484. · Zbl 1352.65129
[262] Stenger, F. (1993), Numerical Methods Based on Sinc and Analytic Functions, Vol. 20 of Springer Series in Computational Mathematics, Springer. · Zbl 0803.65141
[263] Stevenson, R. (2009), Adaptive wavelet methods for solving operator equations: An overview, in Multiscale, Nonlinear and Adaptive Approximation (Devore, R. and Kunoth, A., eds), Springer, pp. 543-597. · Zbl 1192.65063
[264] Stoudenmire, E. and Schwab, D. J. (2016), Supervised learning with tensor networks, in Advances in Neural Information Processing Systems 29 (Lee, D.et al., eds), Curran Associates.
[265] Sun, Y. and Kumar, M. (2014), Numerical solution of high dimensional stationary Fokker-Planck equations via tensor decomposition and Chebyshev spectral differentiation, Comput. Math. Appl.67, 1960-1977. · Zbl 1367.65177
[266] Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R. and Legeza, Ö. (2015), Tensor product methods and entanglement optimization for ab initio quantum chemistry, Internat. J. Quantum Chem.115, 1342-1391.
[267] Tobler, C. (2012), Low-rank tensor methods for linear systems and eigenvalue problems. PhD thesis, ETH Zürich.
[268] Tucker, L. R. (1964), The extension of factor analysis to three-dimensional matrices, in Contributions to Mathematical Psychology (Gulliksen, H. and Frederiksen, N., eds), Holt, Rinehart & Winston, pp. 109-127.
[269] Tucker, L. R. (1966), Some mathematical notes on three-mode factor analysis, Psychometrika31, 279-311.
[270] Tyrtyshnikov, E. E. (2003), Tensor approximations of matrices generated by asymptotically smooth functions, Mat. Sb.194, 147-160. · Zbl 1067.65044
[271] Uschmajew, A. (2010), Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations, Numer. Math115, 309-331. · Zbl 1192.65086
[272] Uschmajew, A. (2012), Local convergence of the alternating least squares algorithm for canonical tensor approximation, SIAM J. Matrix Anal. Appl.33, 639-652. · Zbl 1252.65085
[273] Uschmajew, A. (2013), Zur Theorie der Niedrigrangapproximation in Tensorprodukten von Hilberträumen. PhD thesis, Technische UniversitätBerlin.
[274] Uschmajew, A. and Vandereycken, B. (2013), The geometry of algorithms using hierarchical tensors, Linear Algebra Appl.439, 133-166. · Zbl 1281.65062
[275] Uschmajew, A. and Vandereycken, B. (2015), Greedy rank updates combined with Riemannian descent methods for low-rank optimization, in 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 420-424.
[276] Uschmajew, A. and Vandereycken, B. (2020), Geometric methods on low-rank matrix and tensor manifolds, in Handbook of Variational Methods for Nonlinear Geometric Data (Grohs, P.et al., eds), Springer, pp. 261-313. · Zbl 1512.65078
[277] Vidal, G. (2003), Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.91, 147902.
[278] Wang, H. and Thoss, M. (2003), Multilayer formulation of the multiconfiguration time-dependent Hartree theory, J. Chem Phys.119, 1289-1299.
[279] Wang, L. and Chu, M. T. (2014), On the global convergence of the alternating least squares method for rank-one approximation to generic tensors, SIAM J. Matrix Anal. Appl.35, 1058-1072. · Zbl 1305.65129
[280] Weidmann, J. (1980), Linear Operators in Hilbert Spaces, Vol. 68 of Graduate Texts in Mathematics, Springer. · Zbl 0434.47001
[281] White, S. R. (1992), Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett.69, 2863-2866.
[282] White, S. R. (2005), Density matrix renormalization group algorithms with a single center site, Phys. Rev. B72, 180403.
[283] White, S. R. and Martin, R. L. (1999), Ab initio quantum chemistry using the density matrix renormalization group, J. Chem. Phys.110, 4127-4130.
[284] Wilkinson, J. H. (1968), Global convergence of tridiagonal QR algorithm with origin shifts, Linear Algebra Appl.1, 409-420. · Zbl 0237.65029
[285] Wouters, S. and Van Neck, D. (2014), The density matrix renormalization group for ab initio quantum chemistry, Europ. Phys. J.D68, 1-20. · Zbl 1348.81029
[286] Yang, M. and White, S. R. (2020), Time-dependent variational principle with ancillary Krylov subspace, Phys. Rev. B102, 094315.
[287] Yserentant, H. (2010), Regularity and Approximability of Electronic Wave Functions, Springer. · Zbl 1204.35003
[288] Zeiser, A. (2010), Direkte Diskretisierung der Schrödinger-Gleichung auf dünnen Gittern. PhD thesis, TU Berlin.
[289] Zhou, G., Huang, W., Gallivan, K. A., Van Dooren, P. and Absil, P.-A. (2016), A Riemannian rank-adaptive method for low-rank optimization, Neurocomput.192, 72-80.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.