×

Tensor-structured preconditioners and approximate inverse of elliptic operators in \(\mathbb R^{d}\). (English) Zbl 1185.65051

The author analyses a class of tensor-structured preconditioners for the multidimensional second-order elliptic operators in \(\mathbb{R}^d, d \geq 2\) as well as possible applications of the separable approximation for the free-space Green’s kernels in finite element-boundary element coupling methods and in the Green function formulation. Numerical experiments illustrate the efficiency of low tensor-rank approximation for Green’s kernels.

MSC:

65F08 Preconditioners for iterative methods
65F50 Computational methods for sparse matrices
65F30 Other matrix algorithms (MSC2010)
46B28 Spaces of operators; tensor products; approximation properties
47A80 Tensor products of linear operators
35J25 Boundary value problems for second-order elliptic equations
65N38 Boundary element methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1968) · Zbl 0171.38503
[2] Bertoglio, C., Khoromskij, B.N.: Low rank tensor-product approximation of the projected Green kernels via Sinc-quadratures. Preprint MPI MIS 79/2008, Leipzig, 2008 (submitted)
[3] Beylkin, G., Mohlenkamp, M.J.: Numerical operator calculus in higher dimensions. Proc. Natl. Acad. Sci. USA 99, 10246–10251 (2002) · Zbl 1008.65026 · doi:10.1073/pnas.112329799
[4] Beylkin, G., Mohlenkamp, M.J., Pérez, F.: Approximating a wavefunction as an unconstrained sum of Slater determinants. J. Math. Phys. 49, 032107 (2008) · Zbl 1153.81322 · doi:10.1063/1.2873123
[5] Beylkin, G., Kurcz, Ch., Monzón, L.: Fast algorithms for Helmholtz Green’s function. Proc. R. Soc., Ser. A 464, 3301–3326 (2008) · Zbl 1186.65155 · doi:10.1098/rspa.2008.0161
[6] Beylkin, G., Kurcz, Ch., Monzón, L.: Fast Convolution with the Free Space Helmholtz Green’s function. University of Colorado at Bolder, http://amath.colorado.edu/pub/wavelets/papers/BE-KU-MO-2008P.pdf · Zbl 1165.65082
[7] De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R 1,...,R N ) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000) · Zbl 0958.15026 · doi:10.1137/S0895479898346995
[8] De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000) · Zbl 0962.15005 · doi:10.1137/S0895479896305696
[9] Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N.: -matrix approximation for the operator exponential with applications. Numer. Math. 92, 83–111 (2002) · Zbl 1005.65113 · doi:10.1007/s002110100360
[10] Gavrilyuk, I.P., Hackbusch, W., Khoromskij, B.N.: Tensor-product approximation to elliptic and parabolic solution operators in higher dimensions. Computing 74, 131–157 (2005) · Zbl 1071.65032 · doi:10.1007/s00607-004-0086-y
[11] Griebel, M., Hamaekers, J.: Sparse grids for the Schrödinger equation. ESAIM: M2AN 41, 215–247 (2007) · Zbl 1145.65096 · doi:10.1051/m2an:2007015
[12] Hackbusch, W., Khoromskij, B.N.: Low-rank Kronecker product approximation to multi-dimensional nonlocal operators, part I: separable approximation of multi-variate functions. Computing 76, 177–202 (2006) · Zbl 1087.65049 · doi:10.1007/s00607-005-0144-0
[13] Hackbusch, W., Khoromskij, B.N., Sauter, S., Tyrtyshnikov, E.: Tensor formats in elliptic problems. Preprint MPI MIS 78/2008, Leipzig, 2008 (SINUM, submitted) · Zbl 1274.35252
[14] Hackbusch, W., Khoromskij, B.N., Tyrtyshnikov, E.: Hierarchical Kronecker tensor-product approximation. J. Numer. Math. 13, 119–156 (2005) · Zbl 1081.65035 · doi:10.1515/1569395054012767
[15] Hackbusch, W., Khoromskij, B.N., Tyrtyshnikov, E.E.: Approximate Iterations for Structured Matrices. Numer. Math. 109, 365–383 (2008) · Zbl 1144.65029 · doi:10.1007/s00211-008-0143-0
[16] Harrison, R.J., Fann, G.I., Yanai, T., Gan, Z., Beylkin, G.: Multiresolution quantum chemistry: basic theory and initial applications. J. Chem. Phys. 121(23), 11587–11598 (2004) · doi:10.1063/1.1791051
[17] Khoromskij, B.N.: An Introduction to Structured Tensor-Product Representation of Discrete Nonlocal Operators, vol. 27. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig (2005)
[18] Khoromskij, B.N.: Structured rank-(r 1,...,r d ) decomposition of function-related tensors in \(\mathbb{R}\) d . Comput. Methods Appl. Math. 6(2), 194–220 (2006) · Zbl 1120.65052
[19] Khoromskij, B.N.: On tensor approximation of green iterations for Kohn–Sham equations. Comput. Vis. Sci. 11, 259–271 (2008). doi: 10.1007/s00791-008-0097-x · doi:10.1007/s00791-008-0097-x
[20] Khoromskij, B.N.: Fast and accurate tensor approximation of multivariate convolution with linear scaling in dimension. Preprint MPI MIS 36, Leipzig, 2008. J. Comput. Appl. Math. (accepted)
[21] Khoromskij, B.N., Khoromskaia, V., Chinnamsetty, S.R., Flad, H.-J.: Tensor decomposition in electronic structure calculations on 3D Cartesian grids. J. Comput. Phys. 228, 5749–5762 (2009). · Zbl 1171.82017 · doi:10.1016/j.jcp.2009.04.043
[22] Khoromskij, B.N., Khoromskaia, V.: Low rank tucker-type tensor approximation to classical potentials. Cent. Eur. J. Math. 5(3), 1–28 (2007) · Zbl 1130.65060 · doi:10.2478/s11533-007-0018-0
[23] Khoromskij, B.N., Khoromskaia, V.: Multigrid accelerated tensor approximation of function related multi-dimensional arrays. SIAM J. Sci. Comput. 31(4), 3002–3028 (2009) · Zbl 1197.65215 · doi:10.1137/080730408
[24] Khoromskij, B.N., Schwab, Ch.: Tensor approximation of multi-parametric elliptic problems in stochastic PDEs. ETH Zurich, 2009 (in preparation)
[25] Khoromskij, B.N., Wittum, G.: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface. LNCSE, vol. 36. Springer, Berlin (2004) · Zbl 1043.65128
[26] Maz’ya, V., Schmidt, G.: Approximate Approximations. Math. Surveys and Monographs, vol. 141. AMS, Providence (2007)
[27] Mohlenkamp, M., Young, M.J.: Convergence of Green’s iterations for Schrödinger equations. Preprint 2007 (to appear) · Zbl 1157.65507
[28] Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I: Functional Analysis. Academic Press, New York (1972) · Zbl 0242.46001
[29] Stenger, F.: Numerical Methods Based on Sinc and Analytic Functions. Springer, Berlin (1993) · Zbl 0803.65141
[30] Todor, R.-A., Schwab, Ch.: Convergence rate for sparse approximation of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007) · Zbl 1120.65004 · doi:10.1093/imanum/drl025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.