×

Modular Nekrasov-Okounkov formulas. (English) Zbl 1441.05022

Summary: Using Littlewood’s map, which decomposes a partition into its \(r\)-core and \(r\)-quotient, G.-N. Han and K. Q. Ji [Trans. Am. Math. Soc. 363, No. 2, 1041–1060 (2011; Zbl 1227.05040)] have shown that many well-known hook-length formulas admit modular analogues. In this paper we present a variant of the Han-Ji “multiplication theorem” based on a new analogue of Littlewood’s decomposition. We discuss several applications to hook-length formulas, one of which leads us to conjecture a modular analogue of the \(q,t\)-Nekrasov-Okounkov formula.

MSC:

05A17 Combinatorial aspects of partitions of integers
05E10 Combinatorial aspects of representation theory
05A15 Exact enumeration problems, generating functions

Citations:

Zbl 1227.05040

References:

[1] R. M. Adin and A. Frumkin,Rim hook tableaux and Kostant’sη-function coefficients, Adv. Appl. Math. 33(2004), 492-511. · Zbl 1056.05144
[2] T. Amdeberhan,Theorems, problems and conjectures, manuscript,arXiv:1207.4045.
[3] G. E. Andrews,The Theory of Partitions, Encyclopedia of Mathematics and its Application, Vol. 2, Addison-Wesley, Reading Mass., 1976. · Zbl 0371.10001
[4] E. E. Anible and W. J. Keith,Colored partitions and the hooklength formula: partition statistic identities, preprint,arXiv:1812.11256. · Zbl 1439.05020
[5] H. Awata and H. Kanno,Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Internat. J. Modern Phys. A24(2009), 2253-2306. · Zbl 1170.81423
[6] H. Awata and H. Kanno,Changing the preferred direction of the refined topological vertex, J. Geom. Phys.64(2013), 91-110. · Zbl 1261.81088
[7] A. Bialynicki-Birula,Some theorems on actions of algebraic groups, Ann. Math.98(1973), 480-497. · Zbl 0275.14007
[8] A. Bialynicki-Birula,Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys.24(1976), 667-674. · Zbl 0355.14015
[9] A. Buryak,The classes of the quasihomogeneous Hilbert schemes of points on the plane, Mosc. Math. J. 12(2012), 21-36. · Zbl 1262.14005
[10] A. Buryak and B. L. Feigin,Generating series of the Poincar´e polynomials of quasihomogeneous Hilbert schemes, inSymmetries, Integrable Systems and Representations, pp. 15-33, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013. · Zbl 1307.14007
[11] A. Buryak, B. L. Feigin and H. Nakajima,A simple proof of the formula for the Betti numbers of the quasihomogeneous Hilbert schemes, Int. Math. Res. Not.2015, 4708-4715. · Zbl 1353.14007
[12] E. Carlsson and F. Rodriguez-Villegas,Vertex operators and character varieties, Adv. Math.330(2018), 38-60. · Zbl 1390.05246
[13] W. Chuang, D.-E. Diaconescu, R. Donagi and T. Pantev,Parabolic refined invariants and Macdonald polynomials, Commun. Math. Phys.335(2015), 1323-1379. · Zbl 1367.14019
[14] E. Clader, Y. Kemper and M. Wage,Lacunarity of certain partition-theoretic generating functions, Proc. Amer. Math. Soc.137(2009), 2959-2968. · Zbl 1247.11063
[15] A. Clemm,A conjecture of Han on 3-cores and modular forms, manuscript,arXiv:1410.7219. · Zbl 1305.05015
[16] T. Cotron, A. Michaelsen, E. Stamm and W. Zhu,Lacunary eta-quotients modulo powers of primes, manuscript,arXiv:1707.04627. · Zbl 1460.11120
[17] F. D’Arcais,D´eveloppment en s´erieInterm´ediaire Math.20(1913), 233-234.
[18] E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado,Paths, Maya diagrams and representations of slb(r,C), inIntegrable Systems in Quantum Field Theory and Statistical Mechanics, pp. 149-191, Adv. Stud. Pure Math., 19, Academic Press, Boston, MA, 1989. · Zbl 0704.17013
[19] P.-O. Dehaye and G.-N. Han,A multiset hook length formula and some applications, Discrete Math.311 (2011), 2690-2702. · Zbl 1247.05021
[20] P.-O. Dehaye, G.-N. Han and H. Xiong,Difference operators for partitions under the Littlewood decomposition,Ramanujan J.44(2017), 197-225. · Zbl 1377.05013
[21] L. Evain,Irreducible components of the equivariant punctual Hilbert schemes, Adv. Math.185(2004), 328-346. · Zbl 1064.14004
[22] J. S. Frame, G. de B. Robinson and R. M. Thrall,The hook graphs of the symmetric group, Can. J. Math.6(1954), 316-325. · Zbl 0055.25404
[23] S. Fujii, H. Kanno, S. Moriyama and S. Okada,Instanton calculus and chiral one-point functions in supersymmetric gauge theories, Adv. Theor. Math. Phys.12(2008), 1401-142. · Zbl 1151.81359
[24] K. Gallagher, L. Li and K. Vassilev,Lacunarity of Han-Nekrasov-Okounkovq-series, preprint, arXiv:1807.04576. · Zbl 1471.11147
[25] F. Garvan, D. Kim and D. Stanton,Cranks andt-cores, Invent. Math.101(1990), 1-17. MODULAR NEKRASOV-OKOUNKOV FORMULAS27 · Zbl 0721.11039
[26] G. Gasper and M. Rahman,Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004. · Zbl 1129.33005
[27] G.-N. Han,The Nekrasov-Okounkov hook length formula: refinement, elementary proof, extension and applications, Ann. Inst. Fourier (Grenoble)60(2010), 1-29. · Zbl 1215.05013
[28] G.-N. Han and K. Q. Ji,Combining hook length formulas and BG-ranks for partitions via the Littlewood decomposition, Trans. Amer. Math. Soc.363(2011), 1041-1060. · Zbl 1227.05040
[29] G.-N. Han and K. Ono,Hook lengths and3-cores, Ann. Comb.15(2011), 305-312. · Zbl 1233.05030
[30] G.-N. Han and H. Xiong,Difference operators for partitions and some applications, Ann. Comb.22 (2018), 317-346. · Zbl 1395.05014
[31] G.-N. Han and H. Xiong,Polynomiality of Plancherel averages of hook-content summations for strict, doubled distinct and self-conjugate partitions, J. Combin. Theory Ser. A168(2019), 50-83. · Zbl 1421.05015
[32] T. Hausel, E. Letellier and F. Rodriguez-Villegas,Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J.160(2011), 323-400. · Zbl 1246.14063
[33] T. Hausel and F. Rodriguez-Villegas,Mixed Hodge polynomials of character varieties, (with an appendix by N. M. Katz.), Invent. Math.174(2008), 555-624. · Zbl 1213.14020
[34] B. Heim and M. Neuhauser,On conjectures regarding the Nekrasov-Okounkov hook length formula, Arch. Math. (Basel)113(2019), 355-366. · Zbl 1447.05029
[35] A. Iqbal, C. Koz¸caz and K. Shabbir,Refined topological vertex, cylindric partitions andU(1)adjoint theory, Nuclear Phys. B838(2010), 422-457. · Zbl 1206.81083
[36] A. Iqbal, S. Nazir, Z. Raza and Z. Saleem,Generalizations of Nekrasov-Okounkov identity, Ann. Comb. 16(2012), 745-753. · Zbl 1256.05020
[37] G. James and A. Kerber,The Representation Theory of the Symmetric Group, Encyclopedia of mathematics and its applications, Vol. 16, Addison-Wesley, Reading MA, 1981. · Zbl 0491.20010
[38] A. A. Klyachko,Modular forms and representations of symmetric groups, J. Soviet Math.26(1984), 1879-1887. · Zbl 0538.10024
[39] M. A. A. van Leeuwen,Edge sequences, ribbon tableaux, and an action of affine permutations, European J. Combin.20(1999), 179-195. · Zbl 0918.05102
[40] J. Li, K. Liu and J. Zhou,Topological string partition functions as equivariant indices, Asian J. Math. 10(2006), 81-114. · Zbl 1129.14024
[41] D. E. Littlewood,Modular representations of symmetric groups, Proc. Roy. Soc. London. Ser. A209 (1951), 333-353. · Zbl 0044.25702
[42] I. G. Macdonald,Symmetric functions and Hall polynomials, 2nd edition, Oxford Univ. Press, New York, 1995. · Zbl 0824.05059
[43] T. Nakayama,On some modular properties of irreducible representations of a symmetric group. I & II, Jap. J. Math.18(1941), 89-108 &17(1941), 411-423. · Zbl 0061.04001
[44] N. A. Nekrasov and A. Okounkov,Seiberg-Witten theory and random partitions, inThe Unity of Mathematics, pp. 525-596, Progr. Math., Vol. 244, Birkh¨auser Boston, Boston, MA, 2006. · Zbl 1233.14029
[45] G. Panova,Polynomiality of some hook-length statistics, Ramanujan J.27(2012), 349-356. · Zbl 1244.05230
[46] M. P´etr´eolle,A Nekrasov-Okounkov type formula forC˜, Adv. Appl. Math.79(2016), 1-36. · Zbl 1336.05013
[47] M. P´etr´eolle,Extensions of character formulas by the Littlewood decomposition,manuscript, arXiv:1612.03771.
[48] R. Poghossian and M. Samsonyan,Instantons and the 5DU(1)gauge theory with extra adjoint, J. Phys. A42(2009), 304024. · Zbl 1176.81085
[49] E. Rains and S. O. Warnaar,A Nekrasov-Okounkov formula for Macdonald polynomials, J. Algebraic Combin.48(2018), 1-30. · Zbl 1396.05013
[50] G. de B. Robinson,On the Representations of the symmetric group, Amer. J. Math.60(1938), 745-760. · Zbl 0019.25102
[51] C. Schensted,Longest increasing and decreasing subsequences, Canad. J. Math.13(1961), 179-191. · Zbl 0097.25202
[52] R. P. Stanley,Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999. · Zbl 0928.05001
[53] R. P. Stanley,Some combinatorial properties of hook lengths, contents, and parts of partitions, Ramanujan J.23(2010), 91-105. · Zbl 1234.05234
[54] P. Tingley,Three combinatorial models forslbncrystals, with applications to cylindric plane partitions, Int. Math. Res. Not.2008, Art. ID rnm143, 40 pp. · Zbl 1233.17019
[55] R. Waelder,Equivariant elliptic genera and local McKay correspondences, Asian J. Math.12(2008), 251-284. · Zbl 1165.14017
[56] B. W. Westbury,Universal characters from the Macdonald identities, Adv. Math.202(2006), 50-63. · Zbl 1106.17009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.