×

Eigenvalue distributions of reduced density matrices. (English) Zbl 1304.81051

In this work the authors provide a method based on symplectic geometry to answer the question: What is the probability distribution of the eigenvalues of the one-body reduced density matrices of a pure many-particle quantum state drawn at random from the unitarily invariant distribution? As explained in the text, the eigenvalue distributions that are computed are Duistermaat-Heckman measures, which are defined using the push-forward of the Liouville measure on a symplectic manifold along the moment map. In the second part of the work, the authors study the representation theory connected to the one-body quantum marginal problem, and ”the relevant multiplicities include the Kronecker coefficients, which play a major role in the representation theory of the unitary and symmetric groups”.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81S10 Geometry and quantization, symplectic methods
81P16 Quantum state spaces, operational and probabilistic concepts

References:

[1] Ruskai M.B.: N-representability problem: conditions on geminals. Phys. Rev. 183, 129-141 (1969) · doi:10.1103/PhysRev.183.129
[2] Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge. Lecture Notes in Chemistry, vol. 72. Springer, Berlin (2000) · Zbl 0998.81506
[3] Stillinger, F.H.: Mathematical Challenges from Theoretical/Computational Chemistry. National Academy Press, Atlanta (1995) · Zbl 1043.62006
[4] Liu, Y.-K.: Consistency of local density matrices is QMA-complete. In: Proceedings of RANDOM, pp. 438-449 (2006) · Zbl 1155.68399
[5] Liu Y.-K., Christandl M., Verstraete F.: Quantum computational complexity of the N-representability problem: QMA complete. Phys. Rev. Lett. 98, 110503 (2007) · Zbl 1265.37057 · doi:10.1103/PhysRevLett.98.110503
[6] Klyachko, A.: Quantum marginal problem and representations of the symmetric group. arXiv:quant-ph/0409113 (2004) · Zbl 1262.81012
[7] Daftuar S., Hayden P.: Quantum state transformations and the Schubert calculus. Ann. Phys. 315, 80-122 (2004) · Zbl 1112.81017 · doi:10.1016/j.aop.2004.09.012
[8] Klyachko A.: Quantum marginal problem and N-representability. J. Phys. Conf. Ser. 36, 72-86 (2006) · doi:10.1088/1742-6596/36/1/014
[9] Christandl M., Mitchison G.: The spectra of quantum states and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261, 789-797 (2006) · Zbl 1109.81038 · doi:10.1007/s00220-005-1435-1
[10] Coleman A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35, 668-686 (1963) · doi:10.1103/RevModPhys.35.668
[11] Borland R.E., Dennis K.: The conditions on the one-matrix for three-body fermion wavefunctions with one-rank equal to six. J. Phys. B 5, 7-15 (1972) · doi:10.1088/0022-3700/5/1/009
[12] Ruskai M.B.: Connecting N-representability to Weyl’s problem: the one-particle density matrix for n = 3 and r = 6. J. Phys. A 40, F961-F967 (2007) · Zbl 1155.81011
[13] Klyachko A., Altunbulak M.: The Pauli principle revisited. Commun. Math. Phys. 282, 287-322 (2008) · Zbl 1159.81031 · doi:10.1007/s00220-008-0552-z
[14] Klyachko, A.: The Pauli exclusion principle and beyond. arXiv:0904.2009 (2009) · Zbl 1123.68023
[15] Higuchi, A.: On the one-particle reduced density matrix of a pure three-qutrit quantum state. arXiv:quant-ph/0309186v2 (2003)
[16] Higuchi A., Sudbery A., Szulc J.: One-qubit reduced states of a pure many-qubit state: polygon inequalities. Phys. Rev. Lett. 90, 107902 (2003) · Zbl 1267.81036 · doi:10.1103/PhysRevLett.90.107902
[17] Bravyi S.: Requirements for compatibility between local and multipartite quantum states. Quantum Inf. Comput. 4, 012-026 (2004) · Zbl 1175.81018
[18] Eisert J., Tyc T., Rudolph T., Sanders B.C.: Gaussian quantum marginal problem. Commun. Math. Phys. 280, 263-280 (2008) · Zbl 1145.81019 · doi:10.1007/s00220-008-0442-4
[19] Walter M., Doran B., Gross D., Christandl M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340, 1205-1208 (2013) · Zbl 1355.81041 · doi:10.1126/science.1232957
[20] Huang, K.: Statistical Mechanics. Wiley, New York (1990) · Zbl 0561.58016
[21] Popescu S., Short A.J., Winter A.: Entanglement and the foundations of statistical mechanics. Nat. Phys. 2, 754-758 (2006) · Zbl 1124.68402 · doi:10.1038/nphys444
[22] Lloyd S.: Excuse our ignorance. Nat. Phys. 2, 727-728 (2006) · doi:10.1038/nphys456
[23] Goldstein S., Lebowitz J.L., Tumulka R., Zanhi N.: Canonical typicality. Phys. Rev. Lett. 96, 050403 (2006) · doi:10.1103/PhysRevLett.96.050403
[24] Lloyd S., Pagels H.: Complexity as thermodynamic depth. Ann. Phys. 188, 186-213 (1988) · doi:10.1016/0003-4916(88)90094-2
[25] Berenstein A., Sjamaar R.: Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion. J. Am. Math. Soc. 13, 433-466 (2000) · Zbl 0979.53092 · doi:10.1090/S0894-0347-00-00327-1
[26] Ressayre N.: Geometric invariant theory and the generalized eigenvalue problem. Invent. Math. 180, 389-441 (2010) · Zbl 1197.14051 · doi:10.1007/s00222-010-0233-3
[27] Lubkin E.: Entropy of an n-system from its correlation with a k-reservoir. J. Math. Phys. 19, 1028-1031 (1978) · Zbl 0389.94006 · doi:10.1063/1.523763
[28] Page D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291-1294 (1993) · Zbl 0972.81504 · doi:10.1103/PhysRevLett.71.1291
[29] Page, D.N.: Black hole information. In: Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics. American Mathematical Society, Providence (1994) · Zbl 0915.14010
[30] Hayden P., Preskill J.: Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007) · doi:10.1088/1126-6708/2007/09/120
[31] Heckman G.J.: Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups. Invent. Math. 67, 333-356 (1982) · Zbl 0497.22006 · doi:10.1007/BF01393821
[32] Guillemin V., Sternberg S.: Geometric quantization and multiplicities of group representations. Invent. Math. 67, 515-538 (1982) · Zbl 0503.58018 · doi:10.1007/BF01398934
[33] Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, London (1984) · Zbl 0576.58012
[34] Guillemin V., Lerman E., Sternberg S.: On the Kostant multiplicity formula. J. Geom. Phys. 5, 721-750 (1988) · Zbl 0713.58013 · doi:10.1016/0393-0440(88)90026-5
[35] Guillemin, V., Lerman, E., Sternberg, S.: Symplectic Fibrations and Multiplicity Diagrams. Cambridge University Press, London (1996) · Zbl 0870.58023
[36] Guillemin V., Prato E. Heckman, Kostant, and Steinberg formulas for symplectic manifolds. Adv. Math. 82, 160-179 (1990) · Zbl 0718.58027
[37] Weyl H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71, 441-479 (1912) · JFM 43.0436.01 · doi:10.1007/BF01456804
[38] Helmke U., Rosenthal J.: Eigenvalue inequalities and Schubert calculus. Math. Nachr. 171, 207-225 (1995) · Zbl 0815.15012 · doi:10.1002/mana.19951710113
[39] Klyachko A.: Stable vector bundles and Hermitian operators. Sel. Math. New Ser. 4, 419-445 (1998) · Zbl 0915.14010 · doi:10.1007/s000290050037
[40] Knutson A., Tao T.: The honeycomb model of \[{{\text{GL}}_n({\mathbb{C}})}\] GLn(C) tensor products I: proof of the saturation conjecture. J. Am. Math. Soc. 12, 1055-1090 (1999) · Zbl 0944.05097 · doi:10.1090/S0894-0347-99-00299-4
[41] Fulton W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. 37, 209-249 (2000) · Zbl 0994.15021 · doi:10.1090/S0273-0979-00-00865-X
[42] Knutson A., Tao T.: Honeycombs and sums of Hermitian matrices. Not. Am. Math. Soc. 38, 175-186 (2001) · Zbl 1047.15006
[43] Knutson A., Tao T., Woodward C.: The honeycomb model of \[{{\text{GL}}_n({\mathbb{C}})}\] GLn(C) tensor products II: puzzles determine facets of the Littlewood-Richardson cone. J. Am. Math. Soc. 17, 19-48 (2003) · Zbl 1043.05111 · doi:10.1090/S0894-0347-03-00441-7
[44] Dooley A.H., Repka J., Wildberger N.J.: Sums of adjoint orbits. Linear Multilinear Algebra 36, 79-101 (1993) · Zbl 0797.15010 · doi:10.1080/03081089308818278
[45] Frumkin A., Goldberger A.: On the distribution of the spectrum of the sum of two hermitian or real symmetric matrices. Adv. Appl. Math. 37, 268-286 (2006) · Zbl 1115.22010 · doi:10.1016/j.aam.2005.12.007
[46] Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87-120 (1957) · Zbl 0072.01901 · doi:10.2307/2372387
[47] Boysal A., Vergne M.: Paradan’s wall crossing formula for partition functions and Khovanskii-Pukhlikov differential operators. Ann. l’Inst. Fourier 59, 1715-1752 (2009) · Zbl 1186.52006 · doi:10.5802/aif.2475
[48] Sjamaar R.: Holomorphic slices, symplectic reduction and multiplicities of representations. Ann. Math. 141, 87-129 (1995) · Zbl 0827.32030 · doi:10.2307/2118628
[49] Meinrenken E.: On Riemann-Roch formulas for multiplicities. J. Am. Math. Soc. 9, 373-389 (1996) · Zbl 0851.53020 · doi:10.1090/S0894-0347-96-00197-X
[50] Meinrenken E., Sjamaar R.: Singular reduction and quantization. Topology 38, 699-762 (1999) · Zbl 0928.37013 · doi:10.1016/S0040-9383(98)00012-3
[51] Vergne M.: Quantization of algebraic cones and Vogan’s conjecture. Pac. J. Math. 182, 113-135 (1998) · Zbl 0906.22013 · doi:10.2140/pjm.1998.182.113
[52] Fulton, W.: Young Tableaux. Student Texts. London Mathematical Society (1997) · Zbl 0815.15012
[53] Mulmuley K., Sohoni M.: Geometric complexity theory I: an approach to the P vs. NP and related problems. SIAM J. Comput. 31, 496-526 (2001) · Zbl 0992.03048
[54] Mulmuley K., Sohoni M.: Geometric complexity theory II: towards explicit obstructions for embeddings among class varieties. SIAM J. Comput. 38, 1175-1206 (2008) · Zbl 1168.03030 · doi:10.1137/080718115
[55] Mulmuley, K.: Geometric complexity theory VI: the flip via saturated and positive integer programming in representation theory and algebraic geometry. Technical report, Computer Science Department, The University of Chicago (2007)
[56] Bürgisser P., Landsberg J.M., Manivel L., Weyman J.: An overview of mathematical issues arising in the geometric complexity theory approach to VP ≠ VNP. SIAM J. Comput. 40, 1179-1209 (2011) · Zbl 1252.68134 · doi:10.1137/090765328
[57] Christandl M., Harrow A.W., Mitchison G.: On nonzero Kronecker coefficients and their consequences for spectra. Commun. Math. Phys. 270, 575-585 (2007) · Zbl 1123.81029 · doi:10.1007/s00220-006-0157-3
[58] Knutson, A.: Schubert calculus and quantum information. In: Quantum Marginals and Density Matrices Workshop, Field Institute, Toronto (2009) · Zbl 1168.03030
[59] Bürgisser P., Christandl M., Ikenmeyer C.: Nonvanishing of Kronecker coefficients for rectangular shapes. Adv. Math. 227, 2082-2091 (2011) · Zbl 1220.20006 · doi:10.1016/j.aim.2011.04.012
[60] Bürgisser P., Christandl M., Ikenmeyer C.: Even partitions in plethysms. J. Algebra 328, 322-329 (2011) · Zbl 1241.20050 · doi:10.1016/j.jalgebra.2010.10.031
[61] Lidskii B.V.: Spectral polyhedron of a sum of two Hermitian matrices. Funct. Anal. Appl. 16, 139-140 (1982) · Zbl 0509.15003 · doi:10.1007/BF01081633
[62] Knutson A.: The symplectic and algebraic geometry of Horn’s problem. Linear Algebra Appl. 319, 61-81 (2000) · Zbl 0981.15010 · doi:10.1016/S0024-3795(00)00220-2
[63] Christandl, M.: A quantum information-theoretic proof of the relation between Horn’s Problem and the Littlewood-Richardson coefficients. In: Proceedings of Computability in Europe: CiE 2008. Lecture Notes in Computer Science, vol. 5028, pp. 120-128. Springer, Berlin (2008) · Zbl 1143.81002
[64] Okounkov, A.: Why would multiplicities be log-concave? The orbit method in geometry and physics (Marseilk, 2000). Progress in Mathematics, vol. 213, Birkhauser, Boston, pp. 329-347 (2003). · Zbl 1063.22024
[65] Barvinok A.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. Math. Oper. Res. 19, 769-779 (1994) · Zbl 0821.90085 · doi:10.1287/moor.19.4.769
[66] Carter, R.W., Segal, G., MacDonald, I.G.: Lectures on Lie groups and Lie algebras. London Mathematical Society (1995) · Zbl 0832.22001
[67] Kirillov, Jr. A.: An Introduction to Lie Groups and Lie Algebras. Cambridge Studies in Advanced Mathematics. Cambridge University Press, London (2008) · Zbl 1186.52006
[68] Cannas da Silva, A.: Lectures on Symplectic Geometry, 2nd edn. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2008) · Zbl 1016.53001
[69] Guillemin V., Sternberg S.: Convexity properties of the moment mapping. Invent. Math. 67, 491-513 (1982) · Zbl 0503.58017 · doi:10.1007/BF01398933
[70] Kirwan F.: Convexity properties of the moment mapping, III. Invent. Math. 77, 547-552 (1984) · Zbl 0561.58016 · doi:10.1007/BF01388838
[71] Guillemin, V., Sjamaar, R.: Convexity Properties of Hamiltonian Group Actions. American Mathematical Society, Providence (2005) · Zbl 1084.53069
[72] Lerman E., Meinrenken E., Tolman S., Woodward C.: Non-abelian convexity by symplectic cuts. Topology 37, 245-259 (1998) · Zbl 0913.58023 · doi:10.1016/S0040-9383(97)00030-X
[73] Duistermaat J.J., Heckman G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69, 259-268 (1982) · Zbl 0503.58015 · doi:10.1007/BF01399506
[74] Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Springer, Berlin (2003) · Zbl 1037.58015
[75] Guillemin, V., Sternberg, S.: Geometric Asymptotics. Mathematical Surveys and Monographs, vol. 14. American Mathematical Society, Providence, revised edition (1977) · Zbl 0364.53011
[76] Woodhouse, N.M.J.: Geometric Quantization, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, Oxford/New York (1992) · Zbl 0747.58004
[77] Venuti, L.C., Zanardi, P.: Probability density of quantum expectation values. arXiv:1202.4810 (2012) · Zbl 1302.81045
[78] Zyczkowski K., Sommers H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A 34, 7111-7125 (2001) · Zbl 1031.81011 · doi:10.1088/0305-4470/34/35/335
[79] Hayden P., Leung D., Shor P.W., Winter A.: Randomizing quantum states: constructions and applications. Commun. Math. Phys. 250, 371-391 (2004) · Zbl 1065.81025 · doi:10.1007/s00220-004-1087-6
[80] Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95-117 (2006) · Zbl 1107.81011 · doi:10.1007/s00220-006-1535-6
[81] Aubrun, G., Szarek, S., Ye, D.: Entanglement thresholds for random induced states. arXiv:1106.2264 (2011) · Zbl 1296.81014
[82] Aubrun G., Szarek S., Ye D.: Phase transitions for random states and a semi-circle law for the partial transpose. Phys. Rev. A (Rapid Communications) 85, 030302 (2012) · doi:10.1103/PhysRevA.85.030302
[83] Collins B., Nechita I., Ye D.: The absolute positive partial transpose property for random induced states. Random Matrices Theory Appl. 01, 1250002 (2012) · Zbl 1260.60014 · doi:10.1142/S2010326312500025
[84] Shor P.W.: Equivalence of additivity questions in quantum information theory. Commun. Math. Phys. 246, 453-472 (2004) · Zbl 1070.81030 · doi:10.1007/s00220-003-0981-7
[85] Hastings M.B.: Superadditivity of communication capacity using entangled inputs. Nat. Phys. 5, 255-257 (2009) · doi:10.1038/nphys1224
[86] Aubrun G., Szarek S., Werner E.: Hasting’s additivity counterexample via Dvoretzky’s theorem. Commun. Math. Phys. 305, 85-97 (2011) · Zbl 1222.81131 · doi:10.1007/s00220-010-1172-y
[87] Christandl M., Winter A.: “Squashed entanglement”—an additive entanglement measure. J. Math. Phys. 45, 829-840 (2004) · Zbl 1070.81013 · doi:10.1063/1.1643788
[88] Woodward C.T.: Localization for the norm-square of the moment map and the two-dimensional Yang-Mills integral. J. Symplectic Geom. 3, 17-54 (2005) · Zbl 1103.53052 · doi:10.4310/JSG.2005.v3.n1.a2
[89] Kirwan, F.: Cohomology of Quotients in Symplectic and Algebraic Geometry. Mathematical Notes. Princeton University Press, New Jersey (1984) · Zbl 0553.14020
[90] Barvinok A.: Computing the volume, counting integral points, and exponential sums. Discret. Comput. Geom. 10, 123-141 (1993) · Zbl 0774.68054 · doi:10.1007/BF02573970
[91] Verdoolaege S., Seghir R., Beyls K., Loechner V., Bruynooghe M.: Counting integer points in parametric polytopes using Barvinok’s rational functions. Algorithmica 48, 37-66 (2007) · Zbl 1123.68023 · doi:10.1007/s00453-006-1231-0
[92] Verdoolaege, S., Bruynooghe, M.: Algorithms for weighted counting over parametric polytopes: a survey and a practical comparison. ITSL, pp. 60-66 (2008) · Zbl 0713.58013
[93] Greenberger, D.M., Horne, M.A., Zeilinger A.: Going beyond Bell’s Theorem. In Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, pp. 69-72. Kluwer, Dordrecht (1989) · Zbl 0972.81504
[94] Feller, W.: An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. Wiley, New York (1971) · Zbl 0219.60003
[95] Müller M.P., Dahlsten O.C.O., Vedral V.: Unifying typical entanglement and coin tossing: on randomization in probabilistic theories. Commun. Math. Phys. 316(2), 441-487 (2012) · Zbl 1262.81012 · doi:10.1007/s00220-012-1605-x
[96] Kirillov A.A.: Merits and demerits of the orbit method. Bull. Am. Math. Soc. 36, 433-488 (1999) · Zbl 0940.22013 · doi:10.1090/S0273-0979-99-00849-6
[97] Brion, M.: Sur l’image de l’application moment. In Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin. Lecture Notes in Mathematics, vol. 1296, pp. 177-192. Springer, Berlin (1987) · Zbl 0667.58012
[98] Steinberg R.: A general Clebsch-Gordan theorem. Bull. Am. Math. Soc. 67, 406-407 (1961) · Zbl 0115.25605 · doi:10.1090/S0002-9904-1961-10644-7
[99] Knapp, A.: Lie Groups: Beyond an Introduction, 2nd edition. Progress in Mathematics, vol. 140. Birkhäuser, Boston (2002) · Zbl 1075.22501
[100] Barvinok, A., Pommersheim J.E.: An Algorithmic Theory of Lattice Points in Polyhedra. New Perspectives in Algebraic Combinatorics, vol. 38. MSRI Publications. Cambridge University Press, London (1999) · Zbl 0940.05004
[101] Christandl, M., Doran, B., Walter, M.: Computing multiplicities of Lie group representations. In: Proceedings of 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, pp. 639-648. IEEE Computer Society (2012)
[102] Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enumeration in Polyhedra. Springer, Berlin (2009) · Zbl 1114.52013
[103] MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs (1995) · Zbl 0824.05059
[104] Springer, T.A.: Invariant Theory. Lecture Notes in Mathematics, vol. 585. Springer, Berlin (1977) · Zbl 0346.20020
[105] Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, Berlin (2002) · Zbl 0986.05001
[106] Osgood W.F.: Note on the functions defined by infinite series whose terms are analytic functions of a complex variable; with corresponding theorems for definite integrals, second Series. Ann. Math. 3, 25-34 (1901) · JFM 32.0399.01 · doi:10.2307/1967630
[107] Beardon A.F., Minda D.: On the pointwise limit of complex analytic functions. Am. Math. Mon. 110, 289-297 (2003) · Zbl 1187.30003 · doi:10.2307/3647878
[108] Prodinger H.: On the moments of a distribution defined by the Gaussian polynomials. J. Stat. Plan. Inference 119, 237-239 (2004) · Zbl 1043.62006 · doi:10.1016/S0378-3758(02)00422-6
[109] Panny W.: A note on the higher moments of the expected behavior of straight insertion sort. Inf. Process. Lett. 22, 175-177 (1986) · Zbl 0592.68054 · doi:10.1016/0020-0190(86)90023-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.