×

Entanglement thresholds for random induced states. (English) Zbl 1296.81014

In this work the authors consider the question whether a state obtained by partial tracing a random pure state is typically separable or typically entangled. A rigorous proof is presented in terms of asymptotic geometric analysis. The main result states the existence of effectively computable constants \(C, c>0\) and a function \(s_0(d)\) satisfying certain conditions such that, from the text, “if \(\rho\) is a random state on \(\mathbb{C}^d\otimes\mathbb{C}^d\) distributed according to the measure \(\mu_{d^2,s}\) then for any \(\epsilon>0\), i) If \(s\leq (1-\epsilon)s_0(d)\), we have \[ P(\rho\text{ is separable})\leq 2\exp(-c(\epsilon)d^3), \] ii) If \(s\geq(1+\epsilon)s_0(d)\), we have \[ P(\rho\text{ is entangled})\leq 2\exp(-c(\epsilon)s)." \]

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P45 Quantum information, communication, networks (quantum-theoretic aspects)

References:

[1] Anderson, G. W.; Guionnet, A.; Zeitouni, O.An introduction to random matrices. Cambridge Studies in Advanced Mathematics, 118. Cambridge University Press, Cambridge, 2010. · Zbl 1184.15023
[2] Arveson, W.The probability of entanglement. Comm. Math. Phys.286 (2009), no. 1, 283-312. · Zbl 1176.81011
[3] Aubrun, G.Partial transposition of random states and non‐centered semicircular distributions. Random Matrices Theory Appl.1 (2012), no. 2, 1250001, 29 pp. · Zbl 1239.60002
[4] Aubrun, G.; Szarek, S.Tensor products of convex sets and the volume of separable states on N qudits. Phys. Rev. A73 (2006), no. 2, 022109.
[5] Aubrun, G.; Szarek, S.; Werner, E.Hastings’s additivity counterexample via Dvoretzky’s theorem. Comm. Math. Phys.305 (2011), no. 1, 85-97. · Zbl 1222.81131
[6] Aubrun, G.; Szarek, S. J.; Ye, D.Phase transitions for random states and a semicircle law for the partial transpose. Phy. Rev. A85 (2012), no. 3, 030302.
[7] Bai, Z. D.; Yin, Y. Q.Convergence to the semicircle law. Ann. Probab.16 (1988), no. 2, 863-875. · Zbl 0648.60030
[8] Banaszczyk, W.; Litvak, A. E.; Pajor, A.; Szarek, S.The flatness theorem for nonsymmetric convex bodies via the local theory of Banach spaces. Math. Oper. Res.24 (1999), no. 3, 728-750. · Zbl 0965.52009
[9] Bengtsson, I.; Życzkowski, K.Geometry of quantum states. Cambridge University Press, Cambridge, 2006. · Zbl 1146.81004
[10] Bhatia, R.Matrix analysis. Graduate Texts in Mathematics, 169. Springer, New York, 1997.
[11] Bourgain, J.On martingales transforms in finite‐dimensional lattices with an appendix on the K‐convexity constant. Math. Nachr.119 (1984), 41-53. · Zbl 0568.42010
[12] Buchleitner, A.; Szarek, S. J.; Werner, E.; Zyczkowski, K.;organizers. Mini‐workshop: geometry of quantum entanglement. Oberwolfach Rep.6 (2009), no. 4, 2993-3032. doi:10.4171/OWR/2009/56 · Zbl 1192.00052
[13] Collins, B.; Nechita, I.; Ye, D.The absolute positive partial transpose property for random induced states. Random Matrices: Theory and Applications1 (2012), no. 3, 1250002. · Zbl 1260.60014
[14] Davidson, K. R.; Szarek, S.Local operator theory, random matrices and Banach spaces. Handbook of the geometry of Banach spaces, Vol. 1, 317-366. North‐Holland, Amsterdam, 2001. · Zbl 1067.46008
[15] Davidson, K. R.; Szarek, S.Addenda and corrigenda to: “Local operator theory, random matrices and Banach spaces.”Handbook of the geometry of Banach spaces, Vol. 2, 1819-1820. North‐Holland, Amsterdam, 2003. · Zbl 1112.46302
[16] Einstein, A.; Podolsky, B.; Rosen, N.Can quantum‐mechanical description of physical reality be considered complete?. Phys. Rev.47 (1935), no. 10, 777-780. · Zbl 0012.04201
[17] Fawzi, O.; Hayden, P.; Sen, P.From low‐distortion norm embeddings to explicit uncertainty relations and efficient information locking. STOC’11 ‐ Proceedings of the 43rd ACM Symposium on Theory of Computing (San Jose, 2011), 773-782. Association for Computing Machinery, New York, 2011. · Zbl 1288.81026
[18] Figiel, T.; Tomczak‐Jaegermann, N.Projections onto Hilbertian subspaces of Banach spaces. Israel J. Math.33 (1979), no. 2, 155-171. · Zbl 0427.46010
[19] Galambos, J.Advanced probability theory. Probability: Pure and Applied, 3. Marcel Dekker, New York, 1988. · Zbl 0681.60005
[20] Gurvits, L.Classical deterministic complexity of Edmond’s problem and quantum entanglement. Proceedings of the Thirty‐Fifth Annual ACM Symposium on Theory of Computing (San Diego, 2003), 10-19 (electronic). Association for Computing Machinery, New York, 2003. · Zbl 1192.68252
[21] Gurvits, L.; Barnum, H.Largest separable balls around the maximally mixed bipartite quantum state. Phys. Rev. A66 (2002), no. 6, 062311.
[22] Gurvits, L.; Barnum, H.Better bound on the exponent of the radius of the multipartite separable ball. Phys. Rev. A72 (2005), no. 3, 032322.
[23] Haagerup, U.; Thorbj⊘rnsen, S.Random matrices with complex Gaussian entries. Expo. Math.21 (2003), no. 4, 293-337. · Zbl 1041.15018
[24] Hastings, M. B.Superadditivity of communication capacity using entangled inputs. Nature Physics5 (2009), no. 4, 255-257.
[25] Hayden, P.; Leung, D. W.; Winter, A.Aspects of generic entanglement. Comm. Math. Phys.265 (2006), no. 1, 95-117. · Zbl 1107.81011
[26] Horodecki, P.Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A232 (1997), no. 5, 333-339. · Zbl 1053.81504
[27] Horodecki, M.; Horodecki, P.; Horodecki, R.Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A223 (1996), no. 1‐2, 1-8. · Zbl 1037.81501
[28] Horodecki, M.; Horodecki, P.; Horodecki, R.Mixed‐state entanglement and distillation: Is there a “bound” entanglement in nature?. Phys. Rev. Lett.80 (1998), no. 24, 5239-5242. · Zbl 0947.81005
[29] Kendon, V. M.; Życzkowski, K.; Munro, W. J.Bounds on entanglement in qudit subsystems. Phys. Rev. A66 (2002), no. 6, 062310.
[30] Latała, R.; Oleszkiewicz, K.Gaussian measures of dilatations of convex symmetric sets. Ann. Probab.27 (1999), no. 4, 1922-1938. · Zbl 0966.60037
[31] Ledoux, M.The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, R.I., 2001. · Zbl 0995.60002
[32] Lévy, P.Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino. Second edition.Gauthier‐Villars, Paris, 1951. · Zbl 0043.32302
[33] Li, W. V.; Shao, Q. M.Gaussian processes: inequalities, small ball probabilities and applications. Stochastic processes: theory and methods, 533-597. Handbook of Statistics, 19. North‐Holland, Amsterdam, 2001. · Zbl 0987.60053
[34] Marčhenko, V. A.; Pastur, L. A.Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N. S.)72 (114) (1967), 507-536. · Zbl 0152.16101
[35] Mehta, M. L.Random matrices. Second edition.Academic Press, Boston, 1991. · Zbl 0780.60014
[36] Milman, V. D.; Pajor, A.Entropy and asymptotic geometry of non‐symmetric convex bodies. Adv. Math.152 (2000), no. 2, 314-335. · Zbl 0974.52004
[37] Milman, V. D.; Schechtman, G.Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Mathematics, 1200. Springer, Berlin, 1986. · Zbl 0606.46013
[38] Nielsen, M. A.; Chuang, I. L.Quantum computation and quantum information. Cambridge University Press, Cambridge, 2000. · Zbl 1049.81015
[39] Peres, A.Separability criterion for density matrices. Phys. Rev. Lett.77 (1996), no. 8, 1413-1415. · Zbl 0947.81003
[40] Pisier, G.Un théorème sur les opérateurs linéaires entre espaces de Banach qui se factorisent par un espace de Hilbert. Ann. Sci. École Norm. Sup. (4)13 (1980), 23-43. · Zbl 0436.47013
[41] Pisier, G.The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, 94. Cambridge University Press, Cambridge, 1989. · Zbl 0698.46008
[42] Rogers, C. A.; Shephard, G. C.Convex bodies associated with a given convex body. J. London Math. Soc.33 (1958), 270-281. · Zbl 0083.38402
[43] Rudelson, M.Distances between non‐symmetric convex bodies and the M M^*‐estimate. Positivity4 (2000), no. 2, 161-178. · Zbl 0959.52008
[44] Ruskai, M. B.; Werner, E. M.Bipartite states of low rank are almost surely entangled. J. Phys. A42 (2009), no. 9, 095303, 15 pp. · Zbl 1159.81018
[45] Serre, J.‐P.Linear representations of finite groups. Graduate Texts in Mathematics, 42. Springer, New York-Heidelberg, 1977. · Zbl 0355.20006
[46] Shor, P. W.Algorithms for quantum computation: discrete logarithms and factoring. 35th Annual Symposium on Foundations of Computer Science (Santa Fe, 1994), 124-134. IEEE Computer Society Press, Los Alamitos, Calif., 1994.
[47] Silverstein, J. W.The smallest eigenvalue of a large‐dimensional Wishart matrix. Ann. Probab.13 (1985), no. 4, 1364-1368. · Zbl 0591.60025
[48] Stormer, E.Positive linear maps of operator algebras. Acta Math.110 (1963), 233-278. · Zbl 0173.42105
[49] Szarek, S. J.The volume of separable states is super‐doubly‐exponentially small in the number of qubits. Phys. Rev. A (3)72 (2005), no. 3, part A, 032304, 10 pp.
[50] Szarek, S. J.; Bengtsson, I.; Życzkowski, K.On the structure of the body of states with positive partial transpose. J. Phys. A39 (2006), no. 5, L119-L126. · Zbl 1085.81035
[51] Szarek, S. J.; Werner, E.; Życzkowski, K.Geometry of sets of quantum maps: a generic positive map acting on a high‐dimensional system is not completely positive. J. Math. Phys.49 (2008), no. 3, 032113, 21 pp. · Zbl 1153.81441
[52] Szarek, S. J.; Werner, E.; Życzkowski, K.How often is a random quantum state k‐entangled?. J. Phys. A44 (2011), no. 4, 045303, 15 pp. · Zbl 1206.81023
[53] Walgate, J.; Scott, A. J.Generic local distinguishability and completely entangled subspaces. J. Phys. A41 (2008), no. 37, 375305, 15 pp. · Zbl 1147.81011
[54] Werner, R. F.Quantum states with Einstein‐Podolsky‐Rosen correlations admitting a ‐variable model. Phys. Rev. A40 (1989), no. 8, 4277-4281. · Zbl 1371.81145
[55] Woronowicz, S. L.Positive maps of low dimensional matrix algebra. Rep. Math. Phys.10 (1976), no. 2, 165-183. · Zbl 0347.46063
[56] Ye, D.On the Bures volume of separable quantum states. J. Math. Phy.50 (2009), no. 8, 083502, 14 pp. · Zbl 1298.81030
[57] Ye, D.On the comparison of volumes of quantum states. J. Phys. A43 (2010), no. 31, 315301, 17 pp. · Zbl 1194.81027
[58] Życzkowski, K.; Sommers, H.‐J.Induced measures in the space of mixed quantum states. J. Phys. A34 (2001), no. 35, 7111-7125. · Zbl 1031.81011
[59] Życzkowski, K.; Sommers, H.‐J.Hilbert‐Schmidt volume of the set of mixed quantum states. J. Phys. A36 (2003), no. 39, 10115-10130. · Zbl 1052.81012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.