×

Descent three-term DY-type conjugate gradient methods for constrained monotone equations with application. (English) Zbl 1499.65212

Summary: As it is known that, not all conjugate gradient (CG) methods satisfy descent property, a necessary condition for attaining global convergence result. In this article, we propose three different sufficient-descent conjugate gradient projection algorithms for constrained monotone equations. Using Dai-Yuan (DY) conjugate gradient parameter, we generate three satisfied sufficient-descent directions. Under suitable conditions, global convergence of the algorithms is established. Numerical examples using benchmark test functions indicate that the algorithms are effective for solving constrained monotone nonlinear equations. Moreover, we also extend the method to solve \(\ell_1\)-norm regularized problems to decode a sparse signal in compressive sensing. Performance comparisons show that the proposed methods are practical, efficient and competitive with the compared methods.

MSC:

65K05 Numerical mathematical programming methods
90C05 Linear programming
65D32 Numerical quadrature and cubature formulas
34G20 Nonlinear differential equations in abstract spaces
Full Text: DOI

References:

[1] Abdullahi, H.; Halilu, AS; Waziri, MY, A modified conjugate gradient method via a double direction approach for solving large-scale symmetric nonlinear systems, J Numer Math Stoch, 10, 1, 32-44 (2018) · Zbl 1438.65109
[2] Abubakar AB, Kumam P (2018) A descent Dai-Liao conjugate gradient method for nonlinear equations. Numer Algorithm · Zbl 1412.65042
[3] Abubakar, AB; Kumam, P.; Auwal, AM, A descent Dai-Liao projection method for convex constrained nonlinear monotone equations with applications, Thai J Math, 17, 128-152 (2018) · Zbl 1463.90202
[4] Abubakar AB, Kumam P, Auwal AM (2019a) A modified conjugate gradient method for monotone nonlinear equations with convex constraints. Results Appl Math 4:100069 · Zbl 1477.65079
[5] Abubakar AB, Kumam P, Auwal AM (2019b) Global convergence via descent modified three-term conjugate gradient algorithm with applications to signal recovery. Results Appl Math 4:100069 · Zbl 1453.65120
[6] Amini, K.; Rostami, F., A modified two steps Levenberg-Marquardt method for nonlinear equations, J Comput Appl Math, 288, 341-350 (2015) · Zbl 1320.65074 · doi:10.1016/j.cam.2015.04.040
[7] Dai YH (2011) Nonlinear conjugate gradient methods. In: Cochran JJ (ed) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York
[8] Dai, Z.; Zhu, H., A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations, Mathematics, 8, 168 (2020) · doi:10.3390/math8020168
[9] Dauda MK, Mamat M, Mohamad MF, Magaji AS, Waziri MY (2019) Derivative free conjugate gradient method via Broyden’s update for solving symmetric systems of nonlinear equations. J Phys Conf Ser
[10] Dolan, ED; Moré, JJ, Benchmarking optimization software with performance profiles, Math Program Ser, A91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
[11] Elaine T, Wotao Y, Yin Z (2007) A fixed-point continuation method for \(\ell_1\)-regularized minimization with applications to compressed sensing. CAAM TR07-07, Rice University, pp 43-44
[12] Ferris, MJ; Dirkse, SP, A collection of nonlinear mixed complementarity problems, Optim Methods Softw, 5, 319-45 (1995) · doi:10.1080/10556789508805619
[13] Figueiredo, M.; Nowak, R.; Wright, SJ, Gradient projection for sparse reconstruction, application to compressed sensing and other inverse problems, 586-597 (2007), Piscataway: IEEE J-STSP IEEE Press, Piscataway
[14] Hager, WW; Zhang, H., A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J Optim, 16, 170-192 (2005) · Zbl 1093.90085 · doi:10.1137/030601880
[15] Halilu, AS; Waziri, MY, An improved derivative-free method via double direction approach for solving systems of nonlinear equations, J Ramanujan Math Soc, 33, 75-89 (2018) · Zbl 1427.65082
[16] Halilu, AS; Dauda, MK; Waziri, MY; Mamat, M., A derivative-free decent method via acceleration parameter for solving systems of nonlinear equations, Open J Sci Technol, 2, 3, 1-4 (2019) · doi:10.31580/ojst.v2i3.931
[17] Halilu AS, Majumder A, Waziri MY, Abdullahi H (2020a) Double direction and step length method for solving system of nonlinear equations. Eur J Mol Clin Med 7(7):3899-3913
[18] Halilu AS, Waziri MY, Yusuf I (2020b) Efficient matrix-free direction method with line search for solving large-scale system of nonlinear equations. Yugoslav J Oper Res 30(4):399-412 · Zbl 1474.65166
[19] Halilu AS, Majumder A, Waziri MY, Ahmed K (2021a) Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach. Math Comput Simul. doi:10.1016/j.matcom.2021.03.020 · Zbl 1540.65157
[20] Halilu AS, Majumder A, Waziri MY, Ahmed K (2021b) On solving double direction methods for convex constrained monotone nonlinear equations with image restoration. Comput Appl Math. doi:10.1007/s40314-021-01624-1 · Zbl 1476.65097
[21] Li, D.; Fukushima, M., A globally and superlinearly convergent Gauss-Newton based BFGS method for symmetric equations, SIAM J Numer Anal, 37, 152-172 (1998) · Zbl 0946.65031 · doi:10.1137/S0036142998335704
[22] Li, Q.; Li, DH, A class of derivative-free methods for large-scale nonlinear monotone equations, IMA J Numer Anal, 31, 1625-1635 (2011) · Zbl 1241.65047 · doi:10.1093/imanum/drq015
[23] Li, Z.; Weijun, Z.; Li, D., A descent modified Polak-Ribi \(\acute{e}re\) Polyak conjugate gradient method and its global convergence, IMA J Numer Anal, 26, 4, 629-40 (2006) · Zbl 1106.65056 · doi:10.1093/imanum/drl016
[24] Liao, D.; Fukushima, M., Global and superlinear convergent Gauss-Newton based BFGS method for symmetric nonlinear equation, SIAM J Numer Anal, 37, 152-172 (1999) · Zbl 0946.65031 · doi:10.1137/S0036142998335704
[25] Liu, JK, Derivative-free spectral PRP projection method for solving nonlinear monotone equations with convex constraints, Math Numer Sin, 38, 113-24 (2016) · Zbl 1363.65090
[26] Liu, JK; Li, SJ, A projection method for convex constrained monotone nonlinear equations with applications, Comput Math Appl, x, x (2015) · Zbl 1443.65073
[27] Liu, J.; Li, S., Multivariate spectral Dy-type projection method for convex constrained nonlinear monotone equations, J Ind Manag Optim, 13, 1, 283-295 (2017) · Zbl 1368.49038
[28] Liu, S.; Huang, Y.; Jiao, H., sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations, Hindawi Publ Corp Abstr Appl Anal, 2014 (2014) · Zbl 1470.65104
[29] Mario, AT; Figueiredo, R.; Nowak, D., An EM algorithm for wavelet-based image restoration, IEEE Trans Image Process, 12, 8, 906-916 (2003) · Zbl 1279.94015 · doi:10.1109/TIP.2003.814255
[30] Masoud A, Keyvan A, Somayeh B (2013) Two derivative-free projection approaches for systems of large-scale nonlinear monotone equations. Numer Algorithms. doi:10.1007/s11075-012-9653-z · Zbl 1290.65046
[31] Mohammad, H.; Abubakar, AB, A descent derivative-free algorithm for nonlinear monotone equations with convex constraints, RAIRO Oper Res, 54, 489-505 (2020) · Zbl 1464.65055 · doi:10.1051/ro/2020008
[32] Musa, YB; Waziri, MY; Halilu, AS, On computing the regularization parameter for the Levenberg-Marquardt method via the spectral radius approach to solving systems of nonlinear equations, J Numer Math Stoch, 9, 1, 80-94 (2017) · Zbl 1438.65110
[33] Narushima, Y.; Yabe, H.; Ford, J., A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM J Optim, 21, 1, 212-30 (2011) · Zbl 1250.90087 · doi:10.1137/080743573
[34] Orovic I, Papic V, Ioana C, Li X, Stankovic S (2016) Compressive sensing in signal processing: algorithms and transform domain formulations. Hindawi Publ Corp Math Probl Eng 2016:7616393. doi:10.1155/2016/7616393 · Zbl 1400.94061
[35] Pang, JS, Inexact Newton methods for the nonlinear complementarity problem, Math Program, 1, 54-71 (1986) · Zbl 0613.90097 · doi:10.1007/BF02591989
[36] Sabiu J, Shah A, Waziri MY (2020) Two optimal Hager-Zhang conjugate gradient methods for solving monotone nonlinear equations. Appl Numer Math · Zbl 07188144
[37] Schnabel RB, Frank PD (1984) Tensor methods for nonlinear equations. Soc Ind Appl Math 21(5) · Zbl 0562.65029
[38] Solodov, MV; Svaiter, BF; Fukushima, M.; Qi, L., A globally convergent inexact Newton method for systems of monotone equations, Reformulation: nonsmooth, piecewise smooth, semismooth and smoothing methods, 355-369 (1998), Dordrecht: Kluwer Academic Publishers, Dordrecht · doi:10.1007/978-1-4757-6388-1_18
[39] Torabi M, Hosseini M (2018) A new descent algorithm using the three-step discretization method for solving unconstrained optimization problems. Mathematics · Zbl 1534.65090
[40] Waziri, MY; Leong, WJ; Hassan, MA, Jacobian-free diagonal newtons method for solving nonlinear systems with singular Jacobian, Malays J Math Sci, 5, 241-255 (2011) · Zbl 1244.65072
[41] Waziri MY, Ahmad K, Halilu AS (2020a) Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations. SeMA J. doi:10.1007/s40324-020-00228-9 · Zbl 1476.65109
[42] Waziri MY, Ahmed K, Sabiu J (2020b) Descent Perry conjugate gradient methods for systems of monotone nonlinear equations. Numer Algorithms · Zbl 1455.65085
[43] Waziri MY, Kufena YM, Halilu AS (2020c) Derivative-free three-term spectral conjugate gradient method for symmetric nonlinear equations. Thai J Math 18(3):1417-1431 · Zbl 1482.90248
[44] Waziri M, Muhammad HU, Halilu AS, Ahmed K (2020d) Modified matrix-free methods for solving system of nonlinear equations. Optimization 70:2321-2340 · Zbl 1492.65139
[45] Xiao Y, Zhu H (2013a) A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J Math Anal Appl 405:310-319 · Zbl 1316.90050
[46] Xiao Y, Zhu H (2013b) A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J Math Anal Appl 405(1):310-319 · Zbl 1316.90050
[47] Xiao Y, Wang Q, Hu Q (2011a) Non-smooth equations based method for \(l1-norm\) problems with applications to compressed sensing. Nonlinear Anal Theory Methods Appl 74(11):3570-3577 · Zbl 1217.65069
[48] Xiao Y, Wang Q, Hu Q (2011b) Non-smooth equations based method for \(\ell_1\) problems with applications to compressed sensing. Nonlinear Anal Theory Methods Appl 74(11):3570-3577 · Zbl 1217.65069
[49] Yana, Q.; Penga, X.; Li, D., A globally convergent derivative-free method for solving large-scale nonlinear monotone equations, J Comput Appl Math, 234, 649-657 (2010) · Zbl 1189.65102 · doi:10.1016/j.cam.2010.01.001
[50] Yu, GH; Niu, SZ; Ma, JH, Multivariate spectral gradient projection method for non-linear monotone equations with convex constraints, J Ind Manag Optim, 9, 117-129 (2013) · Zbl 1264.49037
[51] Yuan YX (2009) Subspace methods for large scale nonlinear equations and nonlinear least squares. State Key Laboratory of Scientific and Engineering Computing · Zbl 1171.65040
[52] Yuan, N., A derivative-free projection method for solving convex constrained monotone equations, Sci Asia, 43, 195-200 (2017) · doi:10.2306/scienceasia1513-1874.2017.43.195
[53] Zhang, JL; Wang, W., A new trust region method for nonlinear equations, Math Methods Oper Res, 58, 283-298 (2003) · Zbl 1043.65072 · doi:10.1007/s001860300302
[54] Zhao, YB; Li, D., Monotonicity of fixed point and normal mappings associated with variational inequality and its application, SIAM J Optim, 11, 962-973 (2001) · Zbl 1010.90084 · doi:10.1137/S1052623499357957
[55] Zoltan, P.; Sanja, R., FR type methods for systems of large-scale nonlinear monotone equations, Appl Math Comput, 269, 816-823 (2015) · Zbl 1410.65196 · doi:10.1016/j.camwa.2015.09.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.