×

Enhanced Dai-Liao conjugate gradient methods for systems of monotone nonlinear equations. (English) Zbl 1476.65109

Summary: In this paper, we propose two conjugate gradient methods for solving large-scale monotone nonlinear equations. The methods are developed by combining the hyperplane projection method by M. V. Solodov and B. F. Svaiter [Appl. Optim. 22, 355–369 (1999; Zbl 0928.65059)] and two modified search directions of the famous method of Y. H. Dai and L. Z. Liao [Appl. Math. Optim. 43, No. 1, 87–101 (2001; Zbl 0973.65050)]. It is shown that the proposed schemes satisfy the sufficient descent condition. The global convergence of the methods are established under mild conditions, and computational experiments on some benchmark test problems show that the methods are promising.

MSC:

65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
90C53 Methods of quasi-Newton type
49M37 Numerical methods based on nonlinear programming
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI

References:

[1] Andrei, N., Open problems in conjugate gradient algorithms for unconstrained optimization, Bull. Malays. Math. Sci. Soc., 34, 2, 319-330 (2011) · Zbl 1225.49030
[2] Andrei, N., Accelerated adaptive Perry conjugate gradient algorithms based on the self-scaling BFGS update, J. Comput. Appl. Math., 325, 149-164 (2017) · Zbl 1365.65158
[3] Arazm, MR; Babaie-Kafaki, S.; Ghanbari, R., An extended Dai-Liao conjugate gradient method with global convergence for nonconvex functions, Glasnik matematic, 52, 72, 361-375 (2017) · Zbl 1380.65099
[4] Babaie-Kafaki, S.; Ghanbari, R.; Mahdavi-Amiri, N., Two new conjugate gradient methods based on modified secant equations, J. Comput. Appl. Math., 234, 5, 1374-1386 (2010) · Zbl 1202.65071
[5] Babaie-Kafaki, S.; Ghanbari, R., A descent family of Dai-Liao conjugate gradient methods, Optim. Methods Softw., 29, 3, 583-591 (2013) · Zbl 1285.90063
[6] Babaie-Kafaki, S.; Ghanbari, R., The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices, Eur. J. Oper. Res., 234, 625-630 (2014) · Zbl 1304.90216
[7] Babaie-Kafaki, S.; Ghanbari, R., Two optimal Dai-Liao conjugate gradient methods, Optimization, 64, 2277-2287 (2015) · Zbl 1386.65158
[8] Bouaricha, A.; Schnabel, RB, Tensor methods for large sparse systems of nonlinear equations, Math. Program., 82, 377-400 (1998) · Zbl 0951.65046
[9] Broyden, CG, A class of methods for solving nonlinear simultaneous equations, Math. Comput., 19, 577-593 (1965) · Zbl 0131.13905
[10] Cheng, W., A PRP type method for systems of monotone equations, Math. Comput. Model., 50, 15-20 (2009) · Zbl 1185.65088
[11] Dai, YH; Liao, LZ, New conjugacy conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43, 1, 87-101 (2001) · Zbl 0973.65050
[12] Dai, YH; Yuan, YX, Nonlinear Conjugate Gradient Methods (2000), Shanghai: Shanghai Scientific and Technical Publishers, Shanghai
[13] Dai, Z.; Chen, X.; Wen, F., A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equation, Appl. Math. Comput., 270, 378-386 (2015) · Zbl 1410.90248
[14] Dauda, MK; Mamat, M.; Mohamed, MA; Waziri, MY, Improved quasi-Newton method via SR1 update for solving symmetric systems of nonlinear equations, Malay. J. Fundam. Appl. Sci., 15, 1, 117-120 (2019)
[15] Dolan, ED; Moré, JJ, Benchmarking optimization software with performance profiles, Math. Program., 91, 2, 201-2013 (2002) · Zbl 1049.90004
[16] Fasano, G.; Lampariello, F.; Sciandrone, M., A truncated nonmonotone Gauss-Newton method for large-scale nonlinear least-squares problems, Comput. Optim. Appl., 34, 343-358 (2006) · Zbl 1122.90094
[17] Fatemi, M., An optimal parameter for Dai-Liao family of conjugate gradient methods, J. Optim. Theory Appl., 169, 2, 587-605 (2016) · Zbl 1368.90131
[18] Ford, JA; Moghrabi, IA, Multi-step quasi-Newton methods for optimization, J. Comput. Appl. Math., 50, 1-3, 305-323 (1994) · Zbl 0807.65062
[19] Ford, JA; Narushima, Y.; Yabe, H., Multi-step nonlinear conjugate gradient methods for unconstrained minimization, Comput. Optim. Appl., 40, 2, 191-216 (2008) · Zbl 1181.90221
[20] Grippo, L.; Lampariello, F.; Lucidi, S., A nonmonotone linesearch technique for Newton’s method, SIAM J. Numer. Anal., 23, 707-716 (1986) · Zbl 0616.65067
[21] Hager, WW; Zhang, H., A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2, 1, 35-58 (2006) · Zbl 1117.90048
[22] Hestenes, MR; Stiefel, EL, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49, 409-436 (1952) · Zbl 0048.09901
[23] Hively, GA, On a class of nonlinear integral equations arising in transport theory, SIAM J. Math. Anal., 9, 5, 787-792 (1978) · Zbl 0388.45004
[24] James, MO; Werner, CR, On discretization and differentiation of operators with application to Newton’s method, SIAM J. Numer. Anal., 3, 1, 143-156 (1966) · Zbl 0143.17001
[25] Kanzow, C.; Yamashita, N.; Fukushima, M., Levenberg-Marquardt methods for constrained nonlinear equations with strong local convergence properties, J. Comput. Appl. Math., 172, 375-397 (2004) · Zbl 1064.65037
[26] Khoshgam, Z.; Ashrafi, A., A new modidified scaled conjugate gradient method for large-scale unconstrained optimization with non-convex objective function, Optim. Methods Softw. (2018) · Zbl 1422.90023 · doi:10.1080/10556788.2018.1457152
[27] Kincaid, D.; Cheney, W., Numerical Analysis (1991), Pacific Grove: Brooks/Cole Publishing Company, Pacific Grove · Zbl 0745.65001
[28] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-166 (1944) · Zbl 0063.03501
[29] La Cruz, W., Martinez J.M., Raydan M.: Spectral residual method without gradient information for solving large-scale nonlinear systems: theory and experiments, Citeseer, Technical Report RT-04-08(2004) · Zbl 1122.65049
[30] La Cruz, W.; Raydan, M., Nonmonotone spectral methods for large-scale nonlinear systems, Optim. Methods Softw., 18, 583-599 (2003) · Zbl 1069.65056
[31] Li, DH; Fukushima, M., A globally and superlinearly convergent Gauss-Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numer. Anal., 37, 1, 152-172 (2000) · Zbl 0946.65031
[32] Li, DH; Fukushima, M., A derivative-free linesearch and global convergence of Broyden-like method for nonlinear equations, Optim. Methods Softw., 13, 583-599 (2000)
[33] Li, G.; Tang, C.; Wei, Z., New conjugacy condition and related new conjugate gradient methods for unconstrained optimization, J. Comput. Appl. Math., 202, 2, 523-539 (2007) · Zbl 1116.65069
[34] Liu, D.Y., Shang, Y.F.: A new Perry conjugate gradient method with the generalized conjugacy condition. In: 2010 International Conference on Computational Intelligence and Software Engineering, Wuhan, pp. 1-4 (2010). doi:10.1109/CISE.2010.5677114
[35] Liu, D.Y., Xu, G.Q.: A Perry descent conjugate gradient method with restricted spectrum, pp. 1-19. Optimization Online, Nonlinear Optimization (unconstrained optimization) (2011)
[36] Liu, JK; Li, SJ, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70, 10, 2442-2453 (2015) · Zbl 1443.65073
[37] Livieris, IE; Pintelas, P., Globally convergent modified Perrys conjugate gradient method, Appl. Math. Comput., 218, 9197-9207 (2012) · Zbl 1245.65068
[38] Livieris, IE; Pintelas, P., A new class of spectral conjugate gradient methods based on a modified secant equation for unconstrained optimization, J. Comput. Appl. Math., 239, 396-405 (2013) · Zbl 1258.65058
[39] Livieris, I.E., Pintelas, P.: A descent Dai-Liao conjugate gradient method based on a modified secant equation and its global convergence. ISRN Computational Mathematics (2012) · Zbl 1245.65067
[40] Marquardt, DW, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[41] Nocedal, J.; Wright, SJ, Numerical Optimization (1999), New York: Springer, New York · Zbl 0930.65067
[42] Ortega, JM; Rheinboldt, WC, Iterative Solution of Nonlinear Equations in Several Variables (1970), New York: Academic Press, New York · Zbl 0241.65046
[43] Peiting, G.; Chuanjiang, H., A derivative-free three-term projection algorithm involving spectral quotient for solving nonlinear monotone equations, Optim. J. Math. Program. Oper. Res., 67, 1-18 (2018) · Zbl 1417.90098
[44] Perry, A., A modified conjugate gradient algorithm, Oper. Res. Tech. Notes., 26, 6, 1073-1078 (1978) · Zbl 0419.90074
[45] Polak, BT, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 4, 94-112 (1969) · Zbl 0229.49023
[46] Polak, E.; Ribiere, G., Note sur la convergence de methodes de directions conjugutes, Rev. Fr. Inform. Rech. Oper., 16, 35-43 (1969) · Zbl 0174.48001
[47] Solodov, VM; Iusem, AN, Newton-type methods with generalized distances for constrained optimization, Optimization, 41, 3, 257-27 (1997) · Zbl 0905.49015
[48] Solodov, MV; Svaiter, BF; Fukushima, M.; Qi, L., A globally convergent inexact Newton method for systems of monotone equations, Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, 355-369 (1998), Boston, MA: Springer, Boston, MA
[49] Sun, W.; Yuan, YX, Optimization Theory and Methods: Nonlinear Programming (2006), New York: Springer, New York · Zbl 1129.90002
[50] Sun, Z.; Li, H.; Wang, J.; Tian, Y., Two modified spectral conjugate gradient methods and their global convergence for unconstrained optimization, Int. J. Comput. Math., 95, 1, 1-23 (2017)
[51] Tong, XJ; Qi, L., On the convergence of a trust-region method for solving constrained nonlinear equations with degenerate solutions, J. Optim. Theory Appl., 123, 1, 187-211 (2004) · Zbl 1069.65055
[52] Waziri, MY; Ahmed, K.; Sabi’u, J., A family of Hager-Zhang conjugate gradient methods for system of monotone nonlinear equations, Appl. Math. Comput., 361, 645-660 (2019) · Zbl 1428.90163
[53] Waziri, MY; Ahmed, K.; Sabi’u, J., A Dai-Liao conjugate gradient method via modified secant equation for system of nonlinear equations, Arab. J. Math. (2019) · Zbl 1445.90108 · doi:10.1007/s40065-019-0264-6(2019)
[54] Waziri, MY; Leong, WJ; Hassan, MA, Jacobian free-diagonal Newton’s method for nonlinear systems with singular Jacobian, Malays. J. Math. Sci., 5, 2, 241-255 (2011) · Zbl 1244.65072
[55] Waziri, MY; Sabiu, J., A Derivative-free conjugate gradient method and its global convergence for solving symmetric nonlinear equations, Hindawi Publ. Corp. Int. J. Math. Math. Sci., 2015, 8 (2015) · Zbl 1476.65078
[56] Wei, Z.; Li, G.; Qi, L., New quasi-Newton methods for unconstrained optimization problems, Appl. Math. Comput., 175, 2, 1156-1188 (2006) · Zbl 1100.65054
[57] Xiao, Y.; Zhu, H., A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405, 310-319 (2013) · Zbl 1316.90050
[58] Yabe, H.; Takano, M., Global convergence properties of nonlinear conjugate gradient methods with modified secant condition, Comput. Optim. Appl., 28, 2, 203-225 (2004) · Zbl 1056.90130
[59] Yan, QR; Peng, XZ; Li, DH, A globally convergent derivative-free method for solving large-scale nonlinear monotone equations, J. Comput. Appl. Math., 234, 649-657 (2010) · Zbl 1189.65102
[60] Yu, G., A derivative-free method for solving large-scale nonlinear systems of equations, J. Ind. Manag. Optim., 6, 149-160 (2010) · Zbl 1187.65055
[61] Yu, G., Nonmonotone spectral gradient-type methods for large-scale unconstrained optimization and nonlinearsystems of equations, Pac. J. Optim., 7, 387-404 (2011) · Zbl 1228.49038
[62] Yuan, G., Wang, B., Sheng, Z.: The Hager-Zhang conjugate gradient algorithm for large-scale nonlinear equations. Int. J. Comput. Math. 96(8), 1533-1547 (2018). doi:10.1080/00207160.2018.1494825 · Zbl 1499.90233
[63] Yuan, YX, A modified BFGS algorithm for unconstrained optimization, IMA J. Numer. Anal., 11, 325-332 (1991) · Zbl 0733.65039
[64] Yuan, Y., Subspace methods for large scale nonlinear equations and nonlinear least squares, Optim. Eng., 10, 207-218 (2009) · Zbl 1171.65040
[65] Yuan, GL; Wei, ZX; Lu, XW, A BFGS trust-region method for nonlinear equations, Computing, 92, 4, 317-333 (2011) · Zbl 1241.65049
[66] Yuan, G.; Zhang, M., A three term Polak-Ribiere-Polyak conjugate gradient algorithm for large-scale nonlinear equations, J. Comput. Appl. Math., 286, 186-195 (2015) · Zbl 1316.90038
[67] Zhang, JZ; Deng, NY; Chen, LH, New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl., 102, 1, 147-157 (1999) · Zbl 0991.90135
[68] Zhang, J.; Xu, C., Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math., 137, 2, 269-278 (2001) · Zbl 1001.65065
[69] Zhang, J.; Wang, Y., A new trust region method for nonlinear equations, Math. Methods Oper. Res., 58, 283-298 (2003) · Zbl 1043.65072
[70] Zhang, L.; Zhou, W., Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196, 478-484 (2006) · Zbl 1128.65034
[71] Zhao, YB; Li, D., Monotonicity of fixed point and normal mappings associated with variational inequality and its application, SIAM J. Optim., 11, 962-973 (2001) · Zbl 1010.90084
[72] Zhou, W.; Shen, D., Convergence properties of an iterative method for solving symmetric non-linear equations, J. Optim. Theory Appl., 164, 1, 277-289 (2015) · Zbl 1307.90175
[73] Zhou, W.; Li, D., Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 25, 1, 89-96 (2007)
[74] Zhou, W.; Wang, F., A PRP-based residual method for large-scale monotone nonlinear equations, Appl. Math. Comput., 261, 1-7 (2015) · Zbl 1410.90208
[75] Zhou, W.; Zhang, L., A nonlinear conjugate gradient method based on the MBFGS secant condition, Optim. Methods Softw., 21, 5, 707-714 (2006) · Zbl 1112.90096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.