×

Periodic functions related to the Gompertz difference equation. (English) Zbl 1510.39008


MSC:

39A23 Periodic solutions of difference equations
39A60 Applications of difference equations
92D25 Population dynamics (general)

References:

[1] M. Bohner, A. Peterson, Dynamic equations on time scales, An introduction with applications, Birkhäuser Boston, Inc., Boston, MA, 2001. https://doi.org/10.1007/978-1-4612-0201-1 · Zbl 0978.39001
[2] S. G. Georgiev, K. Zennir, Boundary Value Problems on Time Scales, Volume I, Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781003173557 · Zbl 1471.34002
[3] S. G. Georgiev, K. Zennir, Boundary Value Problems on Time Scales Volume II, Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781003175827
[4] T, Dynamic Gompertz model, Appl. Math. Info. Sci., 14, 1-9 (2020) · doi:10.18576/amis/140102
[5] T, Some new Gompertz fractional difference equations, Involve, 13, 705-719 (2020) · Zbl 1467.39004 · doi:10.2140/involve.2020.13.705
[6] F, A new approach for modeling with discrete fractional equations, Fundam. Inform., 151, 313-324 (2017) · Zbl 1378.92026 · doi:10.3233/FI-2017-1494
[7] T, A Gompertz distribution for time scales, Turk. J. Math., 45, 185-200 (2021) · Zbl 1493.34238 · doi:10.3906/mat-2003-101
[8] E. Akın, N. N. Pelen, I. U. Tiryaki, F. Yalcin, Parameter identification for Gompertz and logistic dynamic equations, PLOS ONE, 15 (2020), e0230582. https://doi.org/10.1371/journal.pone.0230582
[9] G, Inference on an heteroscedastic Gompertz tumor growth model, Math. Biosci., 328, 108428 (2020) · Zbl 1453.92127 · doi:10.1016/j.mbs.2020.108428
[10] C, Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16, e1007178 (2020) · doi:10.1371/journal.pcbi.1007178
[11] L, The dynamical behavior of a predator-prey system with Gompertz growth function and impulsive dispersal of prey between two patches, Math. Meth. Appl. Sci., 39, 3623-3639 (2015) · Zbl 1342.92217 · doi:10.1002/mma.3806
[12] M, Forecasting of fuel cell technology in hybrid and electric vehicles using Gompertz growth curve, J. Stat. Manage. Syst, 19, 73-88 (2016) · doi:10.1080/09720510.2014.1001601
[13] A, Predicting the path of technological innovation: SAW vs. Moore, Bass, Gompertz, and Kryder, Mark. Sci., 31, 964-979 (2012) · doi:10.1287/mksc.1120.0739
[14] P, Gompertz curves with seasonality, Technol. Forecast. Soc. Change, 45, 287-297 (1994) · doi:10.1016/0040-1625(94)90051-5
[15] E, Gompertz model in COVID-19 spreading simulation, Chaos Solit. Fractals, 154, 111699 (2022) · doi:10.1016/j.chaos.2021.111699
[16] R. A. Conde-Gutiérrez, D. Colorado, S. L. Hernández-Bautista, Comparison of an artificial neural network and Gompertz model for predicting the dynamics of deaths from COVID-19 in México, Nonlinear Dyn., 2021. https://doi.org/10.1007/s11071-021-06471-7
[17] M, Properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 22, 785-800 (2011) · Zbl 1236.44002 · doi:10.1080/10652469.2010.548335
[18] M, Further properties of the Laplace transform on time scales with arbitrary graininess, Integral Transforms Spec. Funct., 24, 289-301 (2013) · Zbl 1276.44001 · doi:10.1080/10652469.2012.689300
[19] M, Delay dynamic equations on isolated time scales and the relevance of one-periodic coefficients, Math. Meth. Appl. Sci., 45, 5821-5838 (2022) · Zbl 1527.34136 · doi:10.1002/mma.8141
[20] M, Periodicity on isolated time scales, Math. Nachr., 295, 259-280 (2022) · Zbl 07745542 · doi:10.1002/mana.201900360
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.