×

Periodicity on isolated time scales. (English) Zbl 07745542

Summary: In this work, we formulate the definition of periodicity for functions defined on isolated time scales. The introduced definition is consistent with the known formulations in the discrete and quantum calculus settings. Using the definition of periodicity, we discuss the existence and uniqueness of periodic solutions to a family of linear dynamic equations on isolated time scales. Examples in quantum calculus and for mixed isolated time scales are presented.
{© 2022 Wiley-VCH GmbH}

MSC:

26E70 Real analysis on time scales or measure chains
39A06 Linear difference equations
39A10 Additive difference equations
39A13 Difference equations, scaling (\(q\)-differences)
39A23 Periodic solutions of difference equations
Full Text: DOI

References:

[1] M.Adıvar, A new periodicity concept for time scales, Math. Slovaca63 (2013), no. 4, 817-828. · Zbl 1340.34349
[2] M.Adıvar and H. C.Koyuncuoğlu, Floquet theory based on new periodicity concept for hybrid systems involving q‐difference equations, Appl. Math. Comput.273 (2016), 1208-1233. · Zbl 1410.34120
[3] M.Adıvar and Y. N.Raffoul, Existence results for periodic solutions of integro‐dynamic equations on time scales, Ann. Mat. Pura Appl. (4)188 (2009), no. 4, 543-559. · Zbl 1176.45008
[4] D. R.Anderson, Multiple periodic solutions for a second‐order problem on periodic time scales, Nonlinear Anal.60 (2005), no. 1, 101-115. · Zbl 1060.34022
[5] A.Ardjouni and A.Djoudi, Existence of periodic solutions for nonlinear neutral dynamic equations with variable delay on a time scale, Commun. Nonlinear Sci. Numer. Simul.17 (2012), no. 7, 3061-3069. · Zbl 1254.34128
[6] A.Ardjouni and A.Djoudi, Periodic solutions for impulsive neutral dynamic equations with infinite delay on time scales, Kragujevac J. Math.42 (2018), no. 1, 69-82. · Zbl 1488.34433
[7] L.Bi, M.Bohner, and M.Fan, Periodic solutions of functional dynamic equations with infinite delay, Nonlinear Anal.68 (2008), no. 5, 1226-1245. · Zbl 1135.34335
[8] M.Bohner and R.Chieochan, Floquet theory for q‐difference equations, Sarajevo J. Math.8(21) (2012), no. 2, 355-366. · Zbl 1321.39010
[9] M.Bohner and R.Chieochan, Positive periodic solutions for higher‐order functional q‐difference equations, J. Appl. Funct. Anal.8 (2013), no. 1, 14-22. · Zbl 1274.39005
[10] M.Bohner and R.Chieochan, The Beverton-Holt q‐difference equation, J. Biol. Dyn.7 (2013), no. 1, 86-95. · Zbl 1448.92177
[11] M.Bohner, M.Fan, and J.Zhang, Existence of periodic solutions in predator‐prey and competition dynamic systems, Nonlinear Anal. Real World Appl.7 (2006), no. 5, 1193-1204. · Zbl 1104.92057
[12] M.Bohner and J. G.Mesquita, Periodic averaging principle in quantum calculus, J. Math. Anal. Appl.435 (2016), no. 2, 1146-1159. · Zbl 1329.81178
[13] M.Bohner and J. G.Mesquita, Massera’s theorem in quantum calculus, Proc. Amer. Math. Soc.146 (2018), no. 11, 4755-4766. · Zbl 1453.39006
[14] M.Bohner and A.Peterson, Dynamic equations on time scales. An introduction with applications, Birkhäuser Boston Inc., Boston, MA, 2001. · Zbl 0978.39001
[15] M.Bohner and A.Peterson, Advances in dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2003. · Zbl 1025.34001
[16] M.Bohner and S.Streipert, The Beverton-Holtq‐difference equation with periodic growth rate, Difference Equations, Discrete Dynamical Systems and Applications, Springer Proc. Math. Stat., vol. 150, Springer, Cham, 2015, pp. 3-14. · Zbl 1336.39011
[17] M.Bohner and S.Streipert, Optimal harvesting policy for the Beverton-Holt quantum difference model, Math. Morav.20 (2016), no. 2, 39-57. · Zbl 1460.91174
[18] M.Bohner and S.Streipert, The second Cushing-Henson conjecture for the Beverton-Holt q‐difference equation, Opuscula Math.37 (2017), no. 6, 795-819. · Zbl 1400.39005
[19] A.Cabada, Extremal solutions and Green’s functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl.290 (2004), no. 1, 35-54. · Zbl 1056.39018
[20] E.Çetin and F. S.Topal, Periodic solutions in shifts \(\delta_\pm\) for a dynamic equation on time scales, Adv. Dyn. Syst. Appl.9 (2014), no. 1, 97-108.
[21] E.Çetin and F. S.Topal, Existence of positive periodic solutions in shifts \(\delta_\pm\) for a nonlinear first order functional dynamic equation on time scales, Filomat30 (2016), no. 9, 2551-2571. · Zbl 1465.34101
[22] V.Kac and P.Cheung, Quantum calculus, Universitext, Springer‐Verlag, New York, 2002. · Zbl 0986.05001
[23] E. R.Kaufmann, Impulsive periodic boundary value problems for dynamic equations on time scale, Adv. Difference Equ. (2009), Art. ID 603271, 10 pages. · Zbl 1182.34114
[24] E. R.Kaufmann, N.Kosmatov, and Y. N.Raffoul, Positive periodic solutions in neutral dynamic equations on a time scale, Nonlinear Stud.18 (2011), no. 1, 75-85. · Zbl 1219.34116
[25] A.Lavagno, A. M.Scarfone, and N. P.Swamy, Basic‐deformed thermostatistics, J. Phys. A40 (2007), no. 30, 8635-8654. · Zbl 1137.82006
[26] A.Lavagno and N. P.Swamy, q‐deformed structures and nonextensive statistics: a comparative study, Phys. A305 (2002), no. 1-2, 310-315. · Zbl 0984.82006
[27] Y. N.Raffoul, Periodic solutions of almost linear Volterra integro‐dynamic equation on periodic time scales, Canad. Math. Bull.58 (2015), no. 1, 174-181. · Zbl 1316.45009
[28] C.Wang and R. P.Agarwal, Changing‐periodic time scales and decomposition theorems of time scales with applications to functions with local almost periodicity and automorphy, Adv. Difference Equ. (2015), ID 296, 21 pages. · Zbl 1422.26012
[29] C.Wang, R. P.Agarwal, and D.O’Regan, Local‐periodic solutions for functional dynamic equations with infinite delay on changing‐periodic time scales, Math. Slovaca68 (2018), no. 6, 1397-1420. · Zbl 1451.34115
[30] A.Zafer, The stability of linear periodic Hamiltonian systems on time scales, Appl. Math. Lett.26 (2013), no. 3, 330-336. · Zbl 1264.34178
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.