×

A pressure-based diffuse interface method for low-Mach multiphase flows with mass transfer. (English) Zbl 1537.76107

Summary: This study presents a novel pressure-based methodology for the efficient numerical solution of a four-equation two-phase diffuse interface model. The proposed methodology has the potential to simulate low-Mach flows with mass transfer. In contrast to the classical conservative four-equation model formulation, the adopted set of equations features volume fraction, temperature, velocity and pressure as the primary variables. The model includes the effects of viscosity, surface tension, thermal conductivity and gravity, and has the ability to incorporate complex equations of state. Additionally, a Gibbs free energy relaxation procedure is used to model mass transfer. A key characteristic of the proposed methodology is the use of high performance and scalable solvers for the solution of the Helmholtz equation for the pressure, which drastically reduces the computational cost compared to analogous density-based approaches. We demonstrate the capabilities of the methodology to simulate flows with large density and viscosity ratios through extended verification against a range of different test cases. Finally, the potential of the methodology to tackle challenging phase change flows is demonstrated with the simulation of three-dimensional nucleate boiling.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T10 Liquid-gas two-phase flows, bubbly flows
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

CaNS; hypre

References:

[1] Van Doormaal, J.; Raithby, G.; McDonald, B., The segregated approach to predicting viscous compressible fluid flows, (ASME 1986 International Gas Turbine Conference and Exhibit (1986), American Society of Mechanical Engineers Digital Collection), 268-277
[2] Dhir, V., Boiling heat transfer, Annu. Rev. Fluid Mech., 30, 365-401 (1998)
[3] Zhao, L.; Guo, L.; Bai, B.; Hou, Y.; Zhang, X., Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator, Internat. J. Heat Mass Transf., 46, 4779-4788 (2003)
[4] Amalfi, R. L.; Vakili-Farahani, F.; Thome, J. R., Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: review and experimental database, Int. J. Refrig., 61, 166-184 (2016)
[5] Narumanchi, S.; Troshko, A.; Bharathan, D.; Hassani, V., Numerical simulations of nucleate boiling in impinging jets: applications in power electronics cooling, Internat. J. Heat Mass Transf., 51, 1-12 (2008) · Zbl 1140.80390
[6] Saurel, R.; Boivin, P.; Le Métayer, O., A general formulation for cavitating, boiling and evaporating flows, Comput. & Fluids, 128, 53-64 (2016) · Zbl 1390.76879
[7] Tryggvason, G.; Scardovelli, R.; Zaleski, S., Direct Numerical Simulations of Gas-Liquid Multiphase Flows (2011), Cambridge University Press · Zbl 1226.76001
[8] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[9] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[10] Dervieux, A.; Thomasset, F., A finite element method for the simulation of a Rayleigh-Taylor instability, (Approximation Methods for Navier-Stokes Problems (1980), Springer), 145-158 · Zbl 0438.76044
[11] Hirt, C. W.; Nichols, B. D., Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[12] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066
[13] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys., 150, 425-467 (1999) · Zbl 0937.76053
[14] LeMartelot, S.; Nkonga, B.; Saurel, R., Liquid and liquid-gas flows at all speeds, J. Comput. Phys., 255, 53-82 (2013) · Zbl 1349.76846
[15] Baer, M.; Nunziato, J., A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, Int. J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[16] Linga, G.; Flåtten, T., A hierarchy of non-equilibrium two-phase flow models, ESAIM Proc. Surv., 66, 109-143 (2019) · Zbl 1443.76227
[17] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678-1712 (2009) · Zbl 1409.76105
[18] Yeom, G.-S.; Chang, K.-S., A modified HLLC-type Riemann solver for the compressible six-equation two-fluid model, Comput. & Fluids, 76, 86-104 (2013) · Zbl 1391.76501
[19] Pelanti, M.; Shyue, K.-M., A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys., 259, 331-357 (2014) · Zbl 1349.76851
[20] Kapila, A.; Menikoff, R.; Bdzil, J.; Son, S.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[21] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577-616 (2002) · Zbl 1169.76407
[22] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664-698 (2005) · Zbl 1061.76083
[23] Perigaud, G.; Saurel, R., A compressible flow model with capillary effects, J. Comput. Phys., 209, 139-178 (2005) · Zbl 1329.76301
[24] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J. Comput. Phys., 229, 7411-7439 (2010) · Zbl 1425.76289
[25] Jain, S. S.; Mani, A.; Moin, P., A conservative diffuse-interface method for compressible two-phase flows, J. Comput. Phys., 418, Article 109606 pp. (2020) · Zbl 07506170
[26] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[27] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[28] Johnsen, E.; Ham, F., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J. Comput. Phys., 231, 5705-5717 (2012) · Zbl 1522.76051
[29] Lund, H.; Aursand, P., Two-phase flow of \(\operatorname{CO}_2\) with phase transfer, Energy Proc., 23, 246-255 (2012)
[30] Le Martelot, S.; Saurel, R.; Nkonga, B., Towards the direct numerical simulation of nucleate boiling flows, Int. J. Multiph. Flow, 66, 62-78 (2014)
[31] Murrone, A.; Guillard, H., Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model, Comput. & Fluids, 37, 1209-1224 (2008) · Zbl 1237.76089
[32] Pelanti, M., Low Mach number preconditioning techniques for Roe-type and HLLC-type methods for a two-phase compressible flow model, Appl. Math. Comput., 310, 112-133 (2017) · Zbl 1427.65210
[33] Jemison, M.; Sussman, M.; Arienti, M., Compressible, multiphase semi-implicit method with moment of fluid interface representation, J. Comput. Phys., 279, 182-217 (2014) · Zbl 1351.76216
[34] Denner, F.; Xiao, C.-N.; van Wachem, B. G., Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation, J. Comput. Phys., 367, 192-234 (2018) · Zbl 1415.76466
[35] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 2050-2057 (1995) · Zbl 0849.76072
[36] Turkel, E.; Vatsa, V. N., Local preconditioners for steady and unsteady flow applications, ESAIM Math. Model. Numer. Anal., 39, 515-535 (2005) · Zbl 1130.76055
[37] Saurel, R.; Pantano, C., Diffuse-interface capturing methods for compressible two-phase flows, Annu. Rev. Fluid Mech., 50, 105-130 (2018) · Zbl 1384.76054
[38] Park, J.; Munz, C.-D., Multiple pressure variables methods for fluid flow at all Mach numbers, Internat. J. Numer. Methods Fluids, 49, 905-931 (2005) · Zbl 1170.76342
[39] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow, J. Comput. Phys., 121, 213-237 (1995) · Zbl 0842.76053
[40] Klein, R.; Botta, N.; Schneider, T.; Munz, C.-D.; Roller, S.; Meister, A.; Hoffmann, L.; Sonar, T., Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Engrg. Math., 39, 261-343 (2001) · Zbl 1015.76071
[41] Munz, C.-D.; Roller, S.; Klein, R.; Geratz, K. J., The extension of incompressible flow solvers to the weakly compressible regime, Comput. & Fluids, 32, 173-196 (2003) · Zbl 1042.76045
[42] Dumbser, M.; Casulli, V., A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier- Stokes equations with general equation of state, Appl. Math. Comput., 272, 479-497 (2016) · Zbl 1410.76220
[43] Bermúdez, A.; Busto, S.; Dumbser, M.; Ferrín, J. L.; Saavedra, L.; Vázquez-Cendón, M. E., A staggered semi-implicit hybrid fv/fe projection method for weakly compressible flows, J. Comput. Phys., 421, Article 109743 pp. (2020) · Zbl 07508366
[44] Busto, S.; Río-Martín, L.; Vázquez-Cendón, M. E.; Dumbser, M., A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes, Appl. Math. Comput., 402, Article 126117 pp. (2021) · Zbl 1510.76082
[45] Re, B.; Abgrall, R., Non-equilibrium model for weakly compressible multi-component flows: the hyperbolic operator, (International Seminar on Non-Ideal Compressible-Fluid Dynamics for Propulsion & Power (2018), Springer), 33-45
[46] Re, B.; Abgrall, R., A pressure-based method for weakly compressible two-phase flows under a baer-nunziato type model with generic equations of state and pressure and velocity disequilibrium (2021), arXiv preprint
[47] Kuhn, M.; Desjardins, O., An all-Mach, low-dissipation strategy for simulating multiphase flows, J. Comput. Phys., Article 110602 pp. (2021) · Zbl 07515858
[48] Fuster, D.; Popinet, S., An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension, J. Comput. Phys., 374, 752-768 (2018) · Zbl 1416.76310
[49] Dalla Barba, F.; Scapin, N.; Demou, A. D.; Rosti, M. E.; Picano, F.; Brandt, L., An interface capturing method for liquid-gas flows at low-Mach number, Comput. & Fluids, 216, Article 104789 pp. (2021) · Zbl 1521.76522
[50] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. Multiph. Flow, 24, 387-410 (1998) · Zbl 1121.76455
[51] Sato, Y.; Ničeno, B., A sharp-interface phase change model for a mass-conservative interface tracking method, J. Comput. Phys., 249, 127-161 (2013)
[52] Tanguy, S.; Sagan, M.; Lalanne, B.; Couderc, F.; Colin, C., Benchmarks and numerical methods for the simulation of boiling flows, J. Comput. Phys., 264, 1-22 (2014) · Zbl 1349.76853
[53] Scapin, N.; Costa, P.; Brandt, L., A volume-of-fluid method for interface-resolved simulations of phase-changing two-fluid flows, J. Comput. Phys., 407, Article 109251 pp. (2020) · Zbl 07504719
[54] Jafari, R.; Okutucu-Özyurt, T., Numerical simulation of flow boiling from an artificial cavity in a microchannel, Internat. J. Heat Mass Transf., 97, 270-278 (2016)
[55] Wang, Z.; Zheng, X.; Chryssostomidis, C.; Karniadakis, G. E., A phase-field method for boiling heat transfer, J. Comput. Phys., Article 110239 pp. (2021) · Zbl 07503725
[56] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface tension, J. Comput. Phys., 100, 335-354 (1992) · Zbl 0775.76110
[57] Flåtten, T.; Lund, H., Relaxation two-phase models and the subcharacteristic condition, Math. Models Methods Appl. Sci., 21, 2379-2407 (2011) · Zbl 1368.76070
[58] Le Métayer, O.; Saurel, R., The noble-Abel stiffened-gas equation of state, Phys. Fluids, 28, Article 046102 pp. (2016)
[59] Saurel, R.; Le Métayer, O., A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, J. Fluid Mech., 431, 239-271 (2001) · Zbl 1039.76069
[60] Wesseling, P., Principles of Computational Fluid Dynamics, vol. 29 (2009), Springer Science & Business Media · Zbl 1185.76005
[61] Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys., 23, 276-299 (1977) · Zbl 0339.76056
[62] Prosperetti, A.; Tryggvason, G., Computational Methods for Multiphase Flow (2009), Cambridge University Press · Zbl 1166.76004
[63] Amsden, A. A.; Harlow, F. H., A simplified MAC technique for incompressible fluid flow calculations, J. Comput. Phys., 6, 322-325 (1970) · Zbl 0206.55002
[64] Falgout, R. D.; Yang, U. M., hypre: a library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[65] De Lorenzo, M.; Lafon, P.; Pelanti, M., A hyperbolic phase-transition model with non-instantaneous eos-independent relaxation procedures, J. Comput. Phys., 379, 279-308 (2019) · Zbl 07581573
[66] Pelanti, M.; De Lorenzo, M.; Lafon, P., A numerical model for liquid-vapor flows with arbitrary heat and mass transfer relaxation times and general equation of state, (APS Division of Fluid Dynamics Meeting Abstracts (2019)), pp. G24-008
[67] Pelanti, M., Arbitrary-rate relaxation techniques for the numerical modeling of compressible two-phase flows with heat and mass transfer (2021), arXiv preprint
[68] Saurel, R.; Petitpas, F.; Abgrall, R., Modelling phase transition in metastable liquids: application to cavitating and flashing flows, J. Fluid Mech., 607, 313-350 (2008) · Zbl 1147.76060
[69] Zein, A.; Hantke, M.; Warnecke, G., Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys., 229, 2964-2998 (2010) · Zbl 1307.76079
[70] Costa, P., A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows, Comput. Math. Appl., 76, 1853-1862 (2018) · Zbl 1442.65156
[71] Kang, M.; Fedkiw, R. P.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15, 323-360 (2000) · Zbl 1049.76046
[72] Liska, R.; Wendroff, B., Comparison of several difference schemes on 1d and 2d test problems for the Euler equations, SIAM J. Sci. Comput., 25, 995-1017 (2003) · Zbl 1096.65089
[73] Miczek, F., Simulation of low Mach number astrophysical flows (2013), Technische Universität München, Ph.D. thesis
[74] Thomann, A.; Puppo, G.; Klingenberg, C., An all speed second order well-balanced IMEX relaxation scheme for the Euler equations with gravity, J. Comput. Phys., 420, Article 109723 pp. (2020) · Zbl 07506636
[75] Kwatra, N.; Su, J.; Grétarsson, J. T.; Fedkiw, R., A method for avoiding the acoustic time step restriction in compressible flow, J. Comput. Phys., 228, 4146-4161 (2009) · Zbl 1273.76356
[76] Gray, D. D.; Giorgini, A., The validity of the Boussinesq approximation for liquids and gases, Internat. J. Heat Mass Transf., 19, 545-551 (1976) · Zbl 0328.76066
[77] de Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution, Internat. J. Numer. Methods Fluids, 3, 249-264 (1983) · Zbl 0538.76075
[78] Hortmann, M.; Perić, M.; Scheuerer, G., Finite volume multigrid prediction of laminar natural convection: bench-mark solutions, Internat. J. Numer. Methods Fluids, 11, 189-207 (1990) · Zbl 0711.76072
[79] Le Quéré, P., Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput. & Fluids, 20, 29-41 (1991) · Zbl 0731.76054
[80] Le Quéré, P.; Weisman, C.; Paillère, H.; Vierendeels, J.; Dick, E.; Becker, R.; Braack, M.; Locke, J., Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Part 1. Reference solutions, ESAIM Math. Model. Numer. Anal., 39, 609-616 (2005) · Zbl 1130.76047
[81] Armengol, J.; Bannwart, F.; Xaman, J.; Santos, R., Effects of variable air properties on transient natural convection for large temperature differences, Int. J. Therm. Sci., 120, 63-79 (2017)
[82] Demou, A.; Frantzis, C.; Grigoriadis, D. G., A low-Mach methodology for efficient direct numerical simulations of variable property thermally driven flows, Internat. J. Heat Mass Transf., 132, 539-549 (2019)
[83] Demou, A. D.; Grigoriadis, D. G., Variable property dns of differentially heated cavities filled with air, Internat. J. Heat Mass Transf., 149, Article 119259 pp. (2020)
[84] Hysing, S.-R.; Turek, S.; Kuzmin, D.; Parolini, N.; Burman, E.; Ganesan, S.; Tobiska, L., Quantitative benchmark computations of two-dimensional bubble dynamics, Internat. J. Numer. Methods Fluids, 60, 1259-1288 (2009) · Zbl 1273.76276
[85] Kim, J., Review of nucleate pool boiling bubble heat transfer mechanisms, Int. J. Multiph. Flow, 35, 1067-1076 (2009)
[86] Cooper, M.; Lloyd, A., The microlayer in nucleate pool boiling, Internat. J. Heat Mass Transf., 12, 895-913 (1969)
[87] Stephan, P.; Busse, C., Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Internat. J. Heat Mass Transf., 35, 383-391 (1992)
[88] Stephan, P.; Hammer, J., A new model for nucleate boiling heat transfer, Heat Mass Transf., 30, 119-125 (1994)
[89] Sato, Y.; Niceno, B., A new contact line treatment for a conservative level set method, J. Comput. Phys., 231, 3887-3895 (2012) · Zbl 1426.76561
[90] Wagner, W.; Cooper, J. R.; Dittmann, A.; Kijima, J.; Kretzschmar, H.-J.; Kruse, A.; Mareš, R.; Oguchi, K.; Sato, H.; Stöcker, I.; Šifner, O.; Takaishi, Y.; Tanishita, I.; Trübenbach, J.; Willkommen, T., The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, Trans. Amer. Soc. Mech. Eng., 122, 150-182 (2000)
[91] De Lorenzo, M.; Lafon, P.; Matteo, M. D.; Pelanti, M.; Seynhaeve, J.-M.; Bartosiewicz, Y., Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations, Int. J. Multiph. Flow, 95, 199-219 (2017)
[92] De Lorenzo, M.; Lafon, P.; Pelanti, M.; Pantano, A.; Di Matteo, M.; Bartosiewicz, Y.; Seynhaeve, J.-M., A hyperbolic phase-transition model coupled to tabulated EoS for two-phase flows in fast depressurizations, Nucl. Eng. Des., 371, Article 110954 pp. (2021)
[93] Le, H.; Moin, P., An improvement of fractional step methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 92, 369-379 (1991) · Zbl 0709.76030
[94] Capuano, F.; Coppola, G.; Chiatto, M.; de Luca, L., Approximate projection method for the incompressible Navier-Stokes equations, AIAA J., 54, 2179-2182 (2016)
[95] Chen, G.-Q.; Levermore, C. D.; Liu, T.-P., Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47, 787-830 (1994) · Zbl 0806.35112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.