×

A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows. (English) Zbl 07508366

Summary: In this article we present a novel staggered semi-implicit hybrid finite-volume/finite-element (FV/FE) method for the resolution of weakly compressible flows in two and three space dimensions. The pressure-based methodology introduced in [A. Bermúdez et al., J. Comput. Phys. 271, 360–378 (2014; Zbl 1349.76305); S. Busto et al., J. Comput. Phys. 353, 169–192 (2018; Zbl 1380.76052)] for viscous incompressible flows is extended here to solve the compressible Navier-Stokes equations. Instead of considering the classical system including the energy conservation equation, we replace it by the pressure evolution equation written in non-conservative form. To ease the discretization of complex spatial domains, face-type unstructured staggered meshes are considered. A projection method allows the decoupling of the computation of the density and linear momentum variables from the pressure. Then, an explicit finite volume scheme is used for the resolution of the transport diffusion equations on the dual mesh, whereas the pressure system is solved implicitly by using continuous finite elements defined on the primal simplex mesh. Consequently, the CFL stability condition depends only on the flow velocity, avoiding the severe time restrictions that might be imposed by the sound velocity in the weakly compressible regime. High order of accuracy in space and time of the transport diffusion stage is attained using a local ADER (LADER) methodology. Moreover, also the CVC Kolgan-type second order in space and first order in time scheme is considered. To prevent spurious oscillations in the presence of shocks, an ENO-based reconstruction, the minmod limiter or the Barth-Jespersen limiter are employed. To show the validity and robustness of our novel staggered semi-implicit hybrid FV/FE scheme, several benchmarks are analysed, showing a good agreement with available exact solutions and numerical reference data from low Mach numbers, up to Mach numbers of the order of unity.

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations

Software:

HLLE; HE-E1GODF; HOLOMAC; MOOD

References:

[1] Bermúdez, A.; Ferrín, J. L.; Saavedra, L.; Vázquez-Cendón, M. E., A projection hybrid finite volume/element method for low-Mach number flows, J. Comput. Phys., 271, 360-378 (2014) · Zbl 1349.76305
[2] Busto, S.; Ferrín, J. L.; Toro, E. F.; Vázquez-Cendón, M. E., A projection hybrid high order finite volume/finite element method for incompressible turbulent flows, J. Comput. Phys., 353, 169-192 (2018) · Zbl 1380.76052
[3] Keshtiban, I.; Belblidia, F.; Webster, M., Compressible flow solvers for low Mach number flows—a review, Int. J. Numer. Methods Fluids, 23, 77-103 (2004) · Zbl 0866.76065
[4] Einfeldt, B.; Munz, C.; Roe, P.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 273-295 (1991) · Zbl 0709.76102
[5] Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47, 357-393 (1959)
[6] Harten, A.; Lax, P.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, 25, 35-61 (1983) · Zbl 0565.65051
[7] Lax, P.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 2, 217-237 (1960) · Zbl 0152.44802
[8] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002) · Zbl 1010.65040
[9] Munz, C. D., On Godunov-type schemes for Lagrangian gas dynamics, SIAM J. Numer. Anal., 31, 17-42 (1994) · Zbl 0796.76057
[10] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic conservation laws, Math. Comput., 38, 339-374 (1982) · Zbl 0483.65055
[11] Roe, P., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[12] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the Harten-Lax-van Leer Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[13] Munz, C.; Dumbser, M.; Zucchini, M., The multiple pressure variables method for fluid dynamics and aeroacoustics at low Mach numbers, Numer. Methods Hyperbolic Kinet. Probl., 7, 335-359 (2003) · Zbl 1210.76136
[14] Turkel, E.; Fiterman, A.; van Leer, B., Preconditioning and the limit to the incompressible flow equations (1993), Institute for Computer Applications in Science and Engineering: Institute for Computer Applications in Science and Engineering Hampton, VA, Tech. rep.
[15] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low Mach number limit, Comput. Fluids, 28, 1, 63-86 (1999) · Zbl 0963.76062
[16] Turkel, E., Preconditioning techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 31, 1, 385-416 (1999)
[17] Meister, A., Asymptotic single and multiple scale expansions in the low Mach number limit, SIAM J. Appl. Math., 60, 1, 256-271 (1999) · Zbl 0941.35052
[18] Park, S. H.; Lee, J. E.; Kwon, J. H., Preconditioned HLLE method for flows at all Mach numbers, AIAA J., 44, 11, 2645-2653 (2006)
[19] Rieper, F., A low-Mach number fix for Roe’s approximate Riemann solver, J. Comput. Phys., 230, 13, 5263-5287 (2011) · Zbl 1419.76461
[20] Mor-Yossef, Y., AUFSR+: low Mach number enhancement of the AUFSR scheme, Comput. Fluids, 136, 301-311 (2016) · Zbl 1390.76497
[21] Simmonds, N.; Tsoutsanis, P.; Antoniadis, A. F.; Jenkins, K. W.; Gaylard, A., Low-Mach number treatment for finite-volume schemes on unstructured meshes, Appl. Math. Comput., 336, 368-393 (2018) · Zbl 1427.76168
[22] Chen, S.-S.; Yan, C.; Xiang, X.-H., Effective low-Mach number improvement for upwind schemes, Comput. Math. Appl., 75, 10, 3737-3755 (2018) · Zbl 1419.65012
[23] Motheau, E.; Duarte, M.; Almgren, A.; Bell, J. B., A hybrid adaptive low-Mach-number/compressible method: Euler equations, J. Comput. Phys., 372, 1027-1047 (2018) · Zbl 1415.76502
[24] Harlow, F.; Welch, J., Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[25] Chorin, A., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[26] Chorin, A., Numerical solution of the Navier-Stokes equations, Math. Comput., 23, 341-354 (1968)
[27] Patankar, V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere Publishing Corporation · Zbl 0521.76003
[28] Bell, J. B.; Colella, P.; Glaz, H. M., A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85, 2, 257-283 (1989) · Zbl 0681.76030
[29] Casulli, V.; Cheng, R. T., Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 629-648 (1992) · Zbl 0762.76068
[30] van Kan, J., A second-order accurate pressure correction method for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7, 870-891 (1986) · Zbl 0594.76023
[31] Casulli, V., A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids, 74, 605-622 (2014) · Zbl 1455.65127
[32] Tavelli, M.; Dumbser, M., A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Appl. Math. Comput., 248, 70-92 (2014) · Zbl 1338.76068
[33] Tavelli, M.; Dumbser, M., A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes, Comput. Fluids, 119, 235-249 (2015) · Zbl 1390.76360
[34] Tavelli, M.; Dumbser, M., A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys., 319, 294-323 (2016) · Zbl 1349.76271
[35] Casulli, V.; Greenspan, D., Pressure method for the numerical solution of transient, compressible fluid flows, Int. J. Numer. Methods Fluids, 4, 1001-1012 (1984) · Zbl 0549.76050
[36] Klein, R., Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics I: one-dimensional flow, J. Comput. Phys., 121, 213-237 (1995) · Zbl 0842.76053
[37] Munz, C.-D.; Roller, S.; Klein, R.; Geratz, K., The extension of incompressible flow solvers to the weakly compressible regime, Comput. Fluids, 32, 2, 173-196 (2003) · Zbl 1042.76045
[38] Dolejsi, V., Semi-implicit interior penalty discontinuous Galerkin methods for viscous compressible flows, Commun. Comput. Phys., 4, 231-274 (2008) · Zbl 1364.76085
[39] Knikker, R., A comparative study of high-order variable-property segregated algorithms for unsteady low Mach number flows, Int. J. Numer. Methods Fluids, 66, 4, 403-427 (2011) · Zbl 1338.76087
[40] Cordier, F.; Degond, P.; Kumbaro, A., An asymptotic-preserving all-speed scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 231, 5685-5704 (2012) · Zbl 1277.76090
[41] Motheau, E.; Abraham, J., A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy, J. Comput. Phys., 313, 430-454 (2016) · Zbl 1349.65324
[42] Ventosa-Molina, J.; Chiva, J.; Lehmkuhl, O.; Muela, J.; Pérez-Segarra, C. D.; Oliva, A., Numerical analysis of conservative unstructured discretisations for low Mach flows, Int. J. Numer. Methods Fluids, 84, 6, 309-334 (2017)
[43] Demirdzic̀, I.; Lilek, Z.; Perić, M., A collocated finite volume method for predicting flows at all speeds, Int. J. Numer. Methods Fluids, 16, 12, 1029-1050 (1993) · Zbl 0774.76066
[44] Park, J.; Munz, C., Multiple pressure variables methods for fluid flow at all Mach numbers, Int. J. Numer. Methods Fluids, 49, 8, 905-931 (2005) · Zbl 1170.76342
[45] Dumbser, M.; Casulli, V., A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations, Appl. Math. Comput., 219, 15, 8057-8077 (2013) · Zbl 1366.76050
[46] Nogueira, X.; Ramírez, L.; Khelladi, S.; Chassaing, J.-C.; Colominas, I., A high-order density-based finite volume method for the computation of all-speed flows, Comput. Methods Appl. Mech. Eng., 298, 229-251 (2016) · Zbl 1423.76305
[47] Xiao, C.-N.; Denner, F.; van Wachem, B. G.M., Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries, J. Comput. Phys., 346, 91-130 (2017) · Zbl 1378.76061
[48] Tavelli, M.; Dumbser, M., A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys., 341, 341-376 (2017) · Zbl 1376.76028
[49] Boscarino, S.; Russo, G.; Scandurra, L., All Mach number second order semi-implicit scheme for the Euler equations of gas dynamics, J. Sci. Comput., 77, 850-884 (2018) · Zbl 1407.65139
[50] Avgerinos, S.; Bernard, F.; Iollo, A.; Russo, G., Linearly implicit all Mach number shock capturing schemes for the Euler equations, J. Comput. Phys., 393, 278-312 (2019) · Zbl 1452.76145
[51] Dumbser, M.; Balsara, D.; Tavelli, M.; Fambri, F., A divergence-free semi-implicit finite volume scheme for ideal, viscous and resistive magnetohydrodynamics, Int. J. Numer. Methods Fluids, 89, 16-42 (2019)
[52] Abbate, E.; Iollo, A.; Puppo, G., An asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity, SIAM J. Sci. Comput., 41, A2850-A2879 (2019) · Zbl 1428.65018
[53] Toro, E.; Vázquez-Cendón, M., Flux splitting schemes for the Euler equations, Comput. Fluids, 70, 1-12 (2012) · Zbl 1365.76243
[54] Degond, P.; Tang, M., All speed scheme for the low Mach number limit of the isentropic Euler equations, Commun. Comput. Phys., 10, 1, 1-31 (2011) · Zbl 1364.76129
[55] Dimarco, G.; Loubère, R.; Michel-Dansac, V.; Vignal, M., Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime, J. Comput. Phys., 372, 178-201 (2018) · Zbl 1415.76467
[56] Thomann, A.; Zenk, M.; Puppo, G.; Klingenber, C., An all speed second order IMEX relaxation scheme for the Euler equations, Commun. Comput. Phys., 28, 2, 591-620 (2020) · Zbl 1480.76083
[57] Coquel, F.; Nguyen, Q. L.; Postel, M.; Tran, Q. H., Local time stepping applied to implicit-explicit methods for hyperbolic systems, Multiscale Model. Simul., 8, 2, 540-570 (2010) · Zbl 1204.35017
[58] Noelle, S.; Bispen, G.; Arun, K. R.; Medvid’ová, M. L.; Munz, C. D., An asymptotic preserving all Mach number scheme for the Euler equations of gas dynamics, (Report 348 (2014), Institut für Geometrie und Praktische Mathematik, RWTH Aachen: Institut für Geometrie und Praktische Mathematik, RWTH Aachen Germany)
[59] Bermúdez, A.; Busto, S.; Ferrín, J. L.; Saavedra, L.; Toro, E. F.; Vázquez-Cendón, M. E., A projection hybrid finite volume-ADER/finite element method for turbulent Navier-Stokes, (Computational Mathematics, Numerical Analysis and Applications. Computational Mathematics, Numerical Analysis and Applications, SEMA SIMAI Springer Series (2017), Springer), 201-206 · Zbl 1464.76069
[60] Busto, S., Contributions to the numerical solution of heterogeneous fluid mechanics models (2018), Universidade de Santiago de Compostela, Ph.D. thesis
[61] Busto, S.; Stabile, G.; Rozza, G.; Vázquez-Cendón, M., POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver, Comput. Math. Appl., 79, 2, 256-273 (2020) · Zbl 1443.65196
[62] Guermond, J. L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 6011-6045 (2006) · Zbl 1122.76072
[63] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Springer · Zbl 1227.76006
[64] Vázquez-Cendón, M. E., Solving Hyperbolic Equations with Finite Volume Methods (2015), Springer · Zbl 1319.65086
[65] Raviart, P.-A.; Thomas, J.-M., Introduction à l’analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise (1983), Masson · Zbl 0561.65069
[66] Ciarlet, P. G., The Finite Element Method for Elliptic Problems, vol. 40 (2002), SIAM · Zbl 0999.65129
[67] Bermúdez, A.; Dervieux, A.; Desideri, J. A.; Vázquez-Cendón, M. E., Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Comput. Methods Appl. Mech. Eng., 155, 1, 49-72 (1998) · Zbl 0961.76047
[68] Toro, E. F.; Hidalgo, A.; Dumbser, M., FORCE schemes on unstructured meshes I: conservative hyperbolic systems, J. Comput. Phys., 228, 9, 3368-3389 (2009) · Zbl 1168.65377
[69] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E. F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 625-647 (2010) · Zbl 1227.76043
[70] Tyliszczak, A., High-order compact difference algorithm on half-staggered meshes for low Mach number flows, Comput. Fluids, 127, 131-145 (2016) · Zbl 1390.76265
[71] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Towards very high order Godunov schemes, (Godunov Methods (2001), Springer) · Zbl 0989.65094
[72] Millington, R.; Toro, E.; Nejad, L., Arbitrary high order methods for conservation laws I: the one dimensional scalar case (June 1999), Manchester Metropolitan University, Department of Computing and Mathematics, Ph.D. thesis
[73] Toro, E. F.; Titarev, V. A., Solution of the generalized Riemann problem for advection-reaction equations, Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., 458, 2018, 271-281 (2002), arXiv: · Zbl 1019.35061
[74] Titarev, V. A.; Toro, E. F., ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys., 204, 2, 715-736 (2005) · Zbl 1060.65641
[75] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys., 212, 1, 150-165 (2006) · Zbl 1087.65590
[76] Takakura, Y., Direct-expansion forms of ADER schemes for conservation laws and their verification, J. Comput. Phys., 219, 2, 855-878 (2006) · Zbl 1330.76100
[77] Zahran, H., Central ADER schemes for hyperbolic conservation laws, J. Math. Anal. Appl., 346, 1, 120-140 (2008) · Zbl 1160.35049
[78] Aboiyar, T.; Georgoulis, E.; Iske, A., Adaptive ADER methods using kernel-based polyharmonic spline WENO reconstruction, SIAM J. Sci. Comput., 32, 3251-3277 (2010) · Zbl 1221.65236
[79] Montecinos, G. I.; Toro, E. F., Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes, J. Comput. Phys., 275, 415-442 (2014) · Zbl 1349.65378
[80] Dumbser, M.; Castro, M.; Parés, C.; Toro, E. F., ADER schemes on unstructured meshes for nonconservative hyperbolic systems: applications to geophysical flows, Comput. Fluids, 38, 9, 1731-1748 (2009) · Zbl 1177.76222
[81] Dumbser, M.; Munz, C., Building blocks for arbitrary high order discontinuous Galerkin schemes, J. Sci. Comput., 27, 215-230 (2006) · Zbl 1115.65100
[82] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. Comput. Phys., 227, 8, 3971-4001 (2008) · Zbl 1142.65070
[83] Dumbser, M.; Balsara, D. S.; Toro, E. F.; Munz, C.-D., A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, J. Comput. Phys., 227, 18, 8209-8253 (2008) · Zbl 1147.65075
[84] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations, Comput. Fluids, 39, 1, 60-76 (2010) · Zbl 1242.76161
[85] Hidalgo, A.; Dumbser, M., ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations, J. Sci. Comput., 48, 1-3, 173-189 (2011) · Zbl 1221.65231
[86] Boscheri, W.; Dumbser, M., A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys., 275, 484-523 (2014) · Zbl 1349.76310
[87] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (2016) · Zbl 1349.76324
[88] Busto, S.; Chiocchetti, S.; Dumbser, M.; Peshkov, E. G.I., High order ADER schemes for continuum mechanics, Front. Phys., 8, 32 (2020)
[89] Busto, S.; Toro, E. F.; Vázquez-Cendón, M. E., Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations, J. Comput. Phys., 327, 553-575 (2016) · Zbl 1422.65203
[90] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accurate essentially non-oscillatory schemes, III, (Upwind and High-Resolution Schemes (1987), Springer), 218-290
[91] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[92] Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (1998), Springer), 325-432 · Zbl 0927.65111
[93] Krivodonova, L., Limiters for high-order discontinuous Galerkin methods, J. Comput. Phys., 226, 879-896 (2007) · Zbl 1125.65091
[94] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 508-532 (2002) · Zbl 1057.76033
[95] P. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin methods, AIAA Paper 2006-112.
[96] McCorquodale, P.; Colella, P., A high-order finite-volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci., 6, 1, 1-25 (2011) · Zbl 1252.65163
[97] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—multi-dimensional optimal order detection (MOOD), J. Comput. Phys., 230, 4028-4050 (2011) · Zbl 1218.65091
[98] Diot, S.; Clain, S.; Loubère, R., Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials, Comput. Fluids, 64, 43-63 (2012) · Zbl 1365.76149
[99] Diot, S.; Loubère, R.; Clain, S., The MOOD method in the three-dimensional case: very-high-order finite volume method for hyperbolic systems, Int. J. Numer. Methods Fluids, 73, 362-392 (2013) · Zbl 1455.65147
[100] Loubere, R.; Dumbser, M.; Diot, S., A new family of high order unstructured MOOD and ADER finite volume schemes for multidimensional systems of hyperbolic conservation laws, Commun. Comput. Phys., 16, 03, 718-763 (2014) · Zbl 1373.76137
[101] Dumbser, M.; Loubère, R., A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes, J. Comput. Phys., 319, 163-199 (2016) · Zbl 1349.65447
[102] Roe, P. L., Modelling of Discontinuous Flows, vol. 22 (1985)
[103] Barth, T.; Jespersen, D., The design and application of upwind schemes on unstructured meshes (1989), Tech. rep.
[104] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[105] Castro, M.; Fernández-Nieto, E.; Ferreiro, A.; Parés, C., Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes, Comput. Methods Appl. Mech. Eng., 198, 33, 2520-2538 (2009) · Zbl 1228.76091
[106] Gaburro, E.; Castro, M. J.; Dumbser, M., Well-balanced arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity, Mon. Not. R. Astron. Soc., 477, 2, 2251-2275 (2018)
[107] Klainermann, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluid, Commun. Pure Appl. Math., 34, 481-524 (1981) · Zbl 0476.76068
[108] Klainermann, S.; Majda, A., Compressible and incompressible fluids, Commun. Pure Appl. Math., 35, 629-651 (1982) · Zbl 0478.76091
[109] Klein, R.; Botta, N.; Schneider, T.; Munz, C.; Roller, S.; Meister, A.; Hoffmann, L.; Sonar, T., Asymptotic adaptive methods for multi-scale problems in fluid mechanics, J. Eng. Math., 39, 261-343 (2001) · Zbl 1015.76071
[110] Munz, C.; Dumbser, M.; Roller, S., Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature, J. Comput. Phys., 224, 1, 352-364 (2007) · Zbl 1261.76049
[111] Rusanov, V. V., The calculation of the interaction of non-stationary shock waves and obstacles, USSR Comput. Math. Math. Phys., 1, 304-320 (1962)
[112] Hughes, T. J., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Eng., 127, 1, 387-401 (1995) · Zbl 0866.76044
[113] Hughes, T. J.; Mazzei, L.; Jansen, K. E., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 1, 47-59 (2000) · Zbl 0998.76040
[114] Guermond, J.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 11, 4248-4267 (2011) · Zbl 1220.65134
[115] Vázquez-Cendón, M. E.; Cea, L., Analysis of a new Kolgan-type scheme motivated by the shallow water equations, Appl. Numer. Math., 62, 4, 489-506 (2012) · Zbl 1237.76092
[116] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1, 1-31 (1978) · Zbl 0387.76063
[117] Schlichting, H.; Gersten, K., Boundary-Layer Theory (2016), Springer
[118] Ghia, U.; Ghia, K.; Shin, C., High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 3, 387-411 (1982) · Zbl 0511.76031
[119] Müller, A.; Behrens, J.; Giraldo, F. X.; Wirth, V., Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments, J. Comput. Phys., 235, 371-393 (2013)
[120] Yelash, L.; Müller, A.; Lukáová-Medvid’ová, M.; Giraldo, F.; Wirth, V., Adaptive discontinuous evolution Galerkin method for dry atmospheric flow, J. Comput. Phys., 268, 106-133 (2014) · Zbl 1349.76292
[121] Bispen, G.; Lukáová-Medvid’ová, M.; Yelash, L., Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation, J. Comput. Phys., 335, 222-248 (2017) · Zbl 1375.76023
[122] Yi, T. H., Time integration of unsteady nonhydrostatic equations with dual time stepping and multigrid methods, J. Comput. Phys., 374, 873-892 (2018) · Zbl 1416.86016
[123] Busto, S.; Tavelli, M.; Boscheri, W.; Dumbser, M., Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. Fluids, 198, Article 104399 pp. (2020) · Zbl 1519.76140
[124] Bermúdez, A., Continuum Thermomechanics, Progress in Mathematical Physics, vol. 43 (2005), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1070.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.