×

Peridynamic modeling for multiscale heat transport of phonon Boltzmann transport equation. (English) Zbl 07839798

Summary: Phonons are the main carriers in semiconductor materials, and the Boltzmann transport equation (BTE) can describe the phonon heat transport well. Numerically solving the phonon BTE is a challenging task due to its high dimensionality and nonlinearity. In this work, we develop a Peridynamic model for steady-state phonon heat transport of phonon Boltzmann transport equation based on the Peridynamic differential operator (PDDO). The effectiveness of Peridynamic modeling has been demonstrated by solving a range of phonon transport problems in 1D, 2D, and 3D geometries. The algorithm is easy to parallelize and implement, showing great promises for the numerical simulation of complex structures.

MSC:

82-XX Statistical mechanics, structure of matter
76-XX Fluid mechanics

Software:

Phonon-Code; MCBTE
Full Text: DOI

References:

[1] Chen, G., Nanoscale Energy Transport and Conversion: a Parallel Treatment of Electrons, Molecules, Phonons, and Photons, 2005, Oxford University Press
[2] Cahill, D. G.; Braun, P. V.; Chen, G.; Clarke, D. R.; Fan, S.; Goodson, K. E.; Keblinski, P.; King, W. P.; Mahan, G. D.; Majumdar, A., Nanoscale thermal transport. ii. 2003-2012, Appl. Phys. Rev., 1, 1, Article 011305 pp., 2014
[3] Ziman, J. M., Electrons and Phonons: the Theory of Transport Phenomena in Solids, 1960, Oxford University Press · Zbl 0088.24004
[4] Murthy, J. Y.; Narumanchi, S. V.; Jose’A, P.-G.; Wang, T.; Ni, C.; Mathur, S. R., Review of multiscale simulation in submicron heat transfer, Int. J. Multiscale Comput. Eng., 3, 1, 2005
[5] A. Majumdar, Microscale heat conduction in dielectric thin films, 1993.
[6] Joshi, A.; Majumdar, A., Transient ballistic and diffusive phonon heat transport in thin films, J. Appl. Phys., 74, 1, 31-39, 1993
[7] Chen, G., Ballistic-diffusive heat-conduction equations, Phys. Rev. Lett., 86, 11, 2297, 2001
[8] Chen, G., Ballistic-diffusive equations for transient heat conduction from nano to macroscales, J. Heat Transf., 124, 2, 320-328, 2002
[9] Chen, G., Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices, Phys. Rev. B, 57, 23, Article 14958 pp., 1998
[10] Péraud, J.-P. M.; Hadjiconstantinou, N. G., Efficient simulation of multidimensional phonon transport using energy-based variance-reduced Monte Carlo formulations, Phys. Rev. B, 84, 20, Article 205331 pp., 2011
[11] Péraud, J.-P. M.; Landon, C. D.; Hadjiconstantinou, N. G., Monte Carlo methods for solving the Boltzmann transport equation, Annu. Rev. Heat Transf., 17, 2014
[12] Pathak, A.; Pawnday, A.; Roy, A. P.; Aref, A. J.; Dargush, G. F.; Bansal, D., Mcbte: a variance-reduced Monte Carlo solution of the linearized Boltzmann transport equation for phonons, Comput. Phys. Commun., 265, Article 108003 pp., 2021 · Zbl 07695379
[13] Yang, R.; Chen, G.; Laroche, M.; Taur, Y., Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation, J. Heat Transf., 127, 3, 298-306, 2005
[14] Minnich, A. J.; Chen, G.; Mansoor, S.; Yilbas, B., Quasiballistic heat transfer studied using the frequency-dependent Boltzmann transport equation, Phys. Rev. B, 84, 23, Article 235207 pp., 2011
[15] Jianling, C.; Yangde, F., Finite difference method for simulating phonon heat transport process, J. Numer. Methods Comput. Appl., 40, 3, 215, 2019 · Zbl 1449.80026
[16] Murthy, J.; Mathur, S., Computation of sub-micron thermal transport using an unstructured finite volume method, J. Heat Transf., 124, 6, 1176-1181, 2002
[17] Ali, S. A.; Kollu, G.; Mazumder, S.; Sadayappan, P.; Mittal, A., Large-scale parallel computation of the phonon Boltzmann transport equation, Int. J. Therm. Sci., 86, 341-351, 2014
[18] Hu, Y.; Shen, Y.; Bao, H., Ultra-efficient and parameter-free computation of submicron thermal transport with phonon Boltzmann transport equation, Fund. Res., 2022
[19] Hamian, S.; Yamada, T.; Faghri, M.; Park, K., Finite element analysis of transient ballistic-diffusive phonon heat transport in two-dimensional domains, Int. J. Heat Mass Transf., 80, 781-788, 2015
[20] Cheng, W.; Alkurdi, A.; Chapuis, P.-O., Coupling mesoscopic Boltzmann transport equation and macroscopic heat diffusion equation for multiscale phonon heat conduction, Nanoscale Microscale Thermophys. Eng., 24, 3-4, 150-167, 2020
[21] Belmabrouk, H.; Rezgui, H.; Nasri, F.; Aissa, M. F.B.; Guizani, A. A., Interfacial heat transport across multilayer nanofilms in ballistic-diffusive regime, Eur. Phys. J. Plus, 135, 1, 109, 2020
[22] Guo, Y.; Wang, M., Lattice Boltzmann modeling of phonon transport, J. Comput. Phys., 315, 1-15, 2016 · Zbl 1349.76686
[23] Guo, Y.; Wang, M., Lattice Boltzmann scheme for hydrodynamic equation of phonon transport, Int. J. Therm. Sci., 171, Article 107178 pp., 2022
[24] Guo, Z.; Xu, K., Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation, Int. J. Heat Mass Transf., 102, 944-958, 2016
[25] Zhang, C.; Guo, Z., Discrete unified gas kinetic scheme for multiscale heat transfer with arbitrary temperature difference, Int. J. Heat Mass Transf., 134, 1127-1136, 2019
[26] Zahiri, S.; Xu, Z.; Hu, Y.; Bao, H.; Shen, Y., A semi-lagrangian method to solve the nongray phonon Boltzmann transport equation, Int. J. Heat Mass Transf., 138, 267-276, 2019
[27] Baker, L. L.; Hadjiconstantinou, N. G., Variance reduction for Monte Carlo solutions of the Boltzmann equation, Phys. Fluids, 17, 5, Article 051703 pp., 2005 · Zbl 1187.76032
[28] Hadjiconstantinou, N. G.; Garcia, A. L.; Bazant, M. Z.; He, G., Statistical error in particle simulations of hydrodynamic phenomena, J. Comput. Phys., 187, 1, 274-297, 2003 · Zbl 1047.76578
[29] Li, R.; Lee, E.; Luo, T., Physics-informed neural networks for solving multiscale mode-resolved phonon Boltzmann transport equation, Mater. Today Phys., 19, Article 100429 pp., 2021
[30] Li, R.; Wang, J.-X.; Lee, E.; Luo, T., Physics-informed deep learning for solving phonon Boltzmann transport equation with large temperature non-equilibrium, npj Comput. Mater., 8, 1, 29, 2022
[31] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 1, 175-209, 2000 · Zbl 0970.74030
[32] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, 2007. · Zbl 1120.74003
[33] Silling, S. A.; Weckner, O.; Askari, E.; Bobaru, F., Crack nucleation in a peridynamic solid, Int. J. Fract., 162, 219-227, 2010 · Zbl 1425.74045
[34] Ha, Y. D.; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., 78, 6, 1156-1168, 2011
[35] Wang, Y.; Han, F.; Lubineau, G., Strength-induced peridynamic modeling and simulation of fractures in brittle materials, Comput. Methods Appl. Mech. Eng., 374, Article 113558 pp., 2021 · Zbl 1506.74038
[36] Bobaru, F.; Duangpanya, M., The peridynamic formulation for transient heat conduction, Int. J. Heat Mass Transf., 53, 19-20, 4047-4059, 2010 · Zbl 1194.80010
[37] Oterkus, S.; Madenci, E.; Agwai, A., Peridynamic thermal diffusion, J. Comput. Phys., 265, 71-96, 2014 · Zbl 1349.80020
[38] Wang, L.; Xu, J.; Wang, J., A peridynamic framework and simulation of non-fourier and nonlocal heat conduction, Int. J. Heat Mass Transf., 118, 1284-1292, 2018
[39] Zhao, T.; Shen, Y., An embedded discontinuity peridynamic model for nonlocal heat conduction with interfacial thermal resistance, Int. J. Heat Mass Transf., 175, Article 121195 pp., 2021
[40] Galadima, Y. K.; Oterkus, E.; Oterkus, S., Static condensation of peridynamic heat conduction model, Math. Mech. Solids, 27, 12, 2689-2714, 2022
[41] Gerstle, W.; Silling, S.; Read, D.; Tewary, V.; Lehoucq, R., Peridynamic simulation of electromigration, Comput. Mater. Continua, 8, 2, 75-92, 2008
[42] Oterkus, S.; Fox, J.; Madenci, E., Simulation of electro-migration through peridynamics, (2013 IEEE 63rd Electronic Components and Technology Conference, 2013, IEEE), 1488-1493
[43] Chen, Z.; Bobaru, F., Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids, 78, 352-381, 2015
[44] Chen, Z.; Jafarzadeh, S.; Zhao, J.; Bobaru, F., A coupled mechano-chemical peridynamic model for pit-to-crack transition in stress-corrosion cracking, J. Mech. Phys. Solids, 146, Article 104203 pp., 2021
[45] Madenci, E.; Barut, A.; Futch, M., Peridynamic differential operator and its applications, Comput. Methods Appl. Mech. Eng., 304, 408-451, 2016 · Zbl 1425.74043
[46] Madenci, E.; Dorduncu, M.; Barut, A.; Futch, M., Numerical solution of linear and nonlinear partial differential equations using the peridynamic differential operator, Numer. Methods Partial Differ. Equ., 33, 5, 1726-1753, 2017 · Zbl 1375.65124
[47] Madenci, E.; Barut, A.; Dorduncu, M., Peridynamic Differential Operator for Numerical Analysis, vol. 10, 2019, Springer · Zbl 07658003
[48] Anicode, S. V.K.; Madenci, E., Peridynamic modeling of dual-phase-lag thermal-moisture coupling in a finite element framework, Eng. Comput., 39, 1, 911-923, 2023
[49] Gao, Y.; Oterkus, S., Nonlocal numerical simulation of low Reynolds number laminar fluid motion by using peridynamic differential operator, Ocean Eng., 179, 135-158, 2019
[50] Chang, H.; Chen, A.; Kareem, A.; Hu, L.; Ma, R., Peridynamic differential operator-based eulerian particle method for 2d internal flows, Comput. Methods Appl. Mech. Eng., 392, Article 114568 pp., 2022 · Zbl 1507.76155
[51] Bekar, A. C.; Madenci, E.; Haghighat, E., On the solution of hyperbolic equations using the peridynamic differential operator, Comput. Methods Appl. Mech. Eng., 391, Article 114574 pp., 2022 · Zbl 1507.74450
[52] Esfarjani, K.; Chen, G.; Stokes, H. T., Heat transport in silicon from first-principles calculations, Phys. Rev. B, 84, 8, Article 085204 pp., 2011
[53] Ju, Y.; Goodson, K., Phonon scattering in silicon films with thickness of order 100 nm, Appl. Phys. Lett., 74, 20, 3005-3007, 1999
[54] Madenci, E.; Oterkus, E., Peridynamics for isotropic materials, (Peridynamic Theory and Its Applications, 2013, Springer), 53-74
[55] Bobaru, F.; Yang, M.; Alves, L. F.; Silling, S. A.; Askari, E.; Xu, J., Convergence, adaptive refinement, and scaling in 1d peridynamics, Int. J. Numer. Methods Eng., 77, 6, 852-877, 2009 · Zbl 1156.74399
[56] Mukherjee, Y.; Mukherjee, S., On boundary conditions in the element-free Galerkin method, Comput. Mech., 19, 4, 264-270, 1997 · Zbl 0884.65105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.