×

On commensurable hyperbolic Coxeter groups. (English) Zbl 1378.51011

Let \(n\in {\mathbb N}\) and \(f : {\mathbb R}^{n+1}\times {\mathbb R}^{n+1}\rightarrow {\mathbb R}\), \(f(x,y):=x_1y_1+\dots+x_ny_n - x_{n+1} y_{n+1}\). Then, \(({\mathbb R}^{n+1}, f)\) is the (real) Minkowski space and \({\mathbb H}^n :=\{ x \in {\mathbb R}^{n+1} ~:~f(x,x)=-1\) and \(x_{n+1} > 0\}\) together with the metric given by \(f\) is (a model of) the \(n\)-dimensional hyperbolic space. Each anisotropic vector \(e\in {\mathbb R}^{n+1}\) (i.e. \(f(e,e)\not= 0\)) supplies the reflection \(\sigma _e\) at the hyperplane \(H=e^\perp\), i.e. the orthogonal transformation \(\in\mathrm O({\mathbb R}^{n+1},f)\) that maps \(e\) to \(-e\) and \(v\) to \(v\) for each vector \(v\in e^{\perp}\). The group \(\mathrm{Isom}({\mathbb H}^n )\) consists of the orthogonal mappings \(\alpha \in\mathrm O({\mathbb R}^{n+1},f)\) such that \(\alpha ({\mathbb H}^n )={\mathbb H}^n \). A subgroup \(\Gamma\) of \(\mathrm{Isom}({\mathbb H}^n )\) is called a (geometric) hyperbolic Coxeter group if \(\Gamma\) is a discrete group generated by finitely many reflections at hyperplanes \(H_i\). As in the Euclidean case, a hyperbolic Coxeter group provides a fundamental domain \(P\) which is a polyhedron \(P=\bigcap _{i=1}^N {H_i}^-\) (with \(H_i=e_i^\perp\) and \(H_i^- := \{ v\in {\mathbb H}^n, ~f(x,e_i)\leq 0 \}\)) where the angles at the intersections of pairs of faces are integer submultiples of \(\pi\) (or zero). Hyperbolic Coxeter groups \(\Gamma\), \(\Gamma'\) are called commensurable if \(g^{-1}\Gamma g \cap \Gamma '\) has finite index in both \(\Gamma\) and \(\Gamma '\) for some \(g\in\mathrm{Isom}({\mathbb H}^n )\). Commensurability is an equivalence relation preserving properties such as cocompactness, cofiniteness and arithmeticity.
The article studies Coxeter groups generated by \(N = n+2\) reflections at hyperplanes bounding a pyramid \(P\subseteq {\mathbb H}^n\) of finite volume such that the neighborhood of the apex is a product of two simplices of positive dimensions. These groups are called hyperbolic Coxeter pyramid groups and have been investigated by E. Vinberg, P. Tumarkin and others. The authors classify hyperbolic Coxeter pyramid groups up to commensurability. A criterion by E. Vinberg distiguishes arithmetic and non-arithmetic pyramid groups. The classification of arithmetic pyramid groups uses algebraic invariants and methods by C. Maclachlan and A. W. Reid [J. Lond. Math. Soc., II. Ser. 58, No. 3, (1998; Zbl 0922.57009); The arithmetic of hyperbolic 3-manifolds. New York, NY: Springer (2003; Zbl 1025.57001)]. The classification of non-arithmetic groups is mainly based on the field generated by powers of traces of Coxeter elements.

MSC:

51F15 Reflection groups, reflection geometries
22E40 Discrete subgroups of Lie groups
20F55 Reflection and Coxeter groups (group-theoretic aspects)
51B20 Minkowski geometries in nonlinear incidence geometry
51M10 Hyperbolic and elliptic geometries (general) and generalizations

Software:

CoxIter

References:

[1] Antolín-Camarena, O., Maloney, G., Roeder, R.: Computing arithmetic invariants for hyperbolic reflection groups. Complex Dynamics. A K Peters, Wellesley (2009) · Zbl 1202.51020
[2] Chowla, P., Chowla, S.: On irrational numbers. Nor. Vidensk. Selsk. Skr. (Trondheim) 3, 1-5 (1982) · Zbl 0483.10033
[3] Coxeter, H.S.M.: Arrangements of equal spheres in non-Euclidean spaces. Acta Math. Acad. Sci. Hung. 5, 263-274 (1954) · Zbl 0058.14301
[4] Emery, V.: Even unimodular Lorentzian lattices and hyperbolic volume. J. Reine Angew. Math. 690, 173-177 (2014) · Zbl 1296.22011
[5] Esselmann, F.: The classification of compact hyperbolic Coxeter \[d\] d-polytopes with \[d+2\] d+2 facets. Comment. Math. Helv. 71, 229-242 (1996) · Zbl 0856.51016 · doi:10.1007/BF02566418
[6] Goodman, O., Heard, D., Hodgson, C.: Commensurators of cusped hyperbolic manifolds. Exp. Math. 17, 283-306 (2008) · Zbl 1338.57016 · doi:10.1080/10586458.2008.10129044
[7] Gromov, M., Piatetski-Shapiro, I.: Nonarithmetic groups in Lobachevsky spaces. Inst. Hautes Études Sci. Publ. Math. 66, 93-103 (1988) · Zbl 0649.22007 · doi:10.1007/BF02698928
[8] Guglielmetti, R.: CoxIter—computing invariants of hyperbolic Coxeter groups. LMS J. Comput. Math. 18, 754-773 (2015) · Zbl 1333.20040 · doi:10.1112/S1461157015000273
[9] Heckman, G.: The volume of hyperbolic Coxeter polytopes of even dimension. Indag. Math. 6, 189-196 (1995) · Zbl 0831.51007 · doi:10.1016/0019-3577(95)91242-N
[10] Im Hof, H.-C.: Napier cycles and hyperbolic Coxeter groups. Bull. Soc. Math. Belg. Sér. A 42, 523-545 (1990) · Zbl 0790.20059
[11] Jacquemet, M.: The inradius of a hyperbolic truncated \[n\] n-simplex. Discrete Comput. Geom. 51, 997-1016 (2014) · Zbl 1319.52021 · doi:10.1007/s00454-014-9600-y
[12] Jacquemet, M.: New Contributions to Hyperbolic Polyhedra, Reflection Groups, and Their Commensurability, Ph.D. thesis, 2015. https://doc.rero.ch/record/257511 · Zbl 0907.20041
[13] Johnson, N., Kellerhals, R., Ratcliffe, J., Tschantz, S.: The size of a hyperbolic Coxeter simplex. Transform. Groups 4, 329-353 (1999) · Zbl 0953.20041 · doi:10.1007/BF01238563
[14] Johnson, N., Kellerhals, R., Ratcliffe, J., Tschantz, S.: Commensurability classes of hyperbolic Coxeter groups. Linear Algebra Appl. 345, 119-147 (2002) · Zbl 1033.20037 · doi:10.1016/S0024-3795(01)00477-3
[15] Johnson, N., Weiss, A.: Quaternionic modular groups. Linear Algebra Appl. 295, 159-189 (1999) · Zbl 0960.20031 · doi:10.1016/S0024-3795(99)00107-X
[16] Kaplinskaja, I.: The discrete groups that are generated by reflections in the faces of simplicial prisms in Lobačevskiĭ spaces. Mat. Zametki 15, 159-164 (1974) · Zbl 0288.50014
[17] Karrass, A., Solitar, D.: The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc. 150, 227-255 (1970) · Zbl 0223.20031 · doi:10.1090/S0002-9947-1970-0260879-9
[18] Kellerhals, R.: On the volume of hyperbolic polyhedra. Math. Ann. 285, 541-569 (1989) · Zbl 0664.51012 · doi:10.1007/BF01452047
[19] Kellerhals, R.: Hyperbolic orbifolds of minimal volume. Comput. Methods Funct. Theory 14, 465-481 (2014) · Zbl 1307.57001 · doi:10.1007/s40315-014-0074-y
[20] Lam, T.Y.: Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence (2005) · Zbl 1068.11023
[21] Maclachlan, C.: Commensurability classes of discrete arithmetic hyperbolic groups. Groups Geom. Dyn. 5, 767-785 (2011) · Zbl 1278.11047 · doi:10.4171/GGD/147
[22] Maclachlan, C., Reid, A.: Invariant trace-fields and quaternion algebras of polyhedral groups. J. Lond. Math. Soc. (2) 58, 709-722 (1998) · Zbl 0922.57009 · doi:10.1112/S0024610798006747
[23] Maclachlan, C., Reid, A.: The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, vol. 219. Springer, New York (2003) · Zbl 1025.57001 · doi:10.1007/978-1-4757-6720-9
[24] Maxwell, G.: Euler characteristics and imbeddings of hyperbolic Coxeter groups. J. Aust. Math. Soc. Ser. A 64, 149-161 (1998) · Zbl 0907.20041 · doi:10.1017/S1446788700001658
[25] Meyerhoff, R.: The cusped hyperbolic \[33\]-orbifold of minimum volume. Bull. Am. Math. Soc. (N.S.) 13, 154-156 (1985) · Zbl 0602.57009 · doi:10.1090/S0273-0979-1985-15401-1
[26] Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. (2) 29, 281-322 (1983) · Zbl 0557.10031
[27] Neumann, W., Reid, A.: Arithmetic of hyperbolic manifolds. In: Topology ’90 (Columbus, OH, 1990), Ohio State University Mathematical Research Institute Publications, vol. 1, pp. 273-310. de Gruyter. Berlin (1992) · Zbl 0777.57007
[28] Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 201-212 (1977) · Zbl 0365.20055
[29] Tumarkin, P.: Hyperbolic Coxeter \[n\] n-polytopes with \[n+2\] n+2 facets, p. 14. arXiv:math/0301133 (2003) · Zbl 1068.52013
[30] Tumarkin, P.: Hyperbolic Coxeter polytopes in \[\mathbb{H}^m\] Hm with \[n+2\] n+2 hyperfacets. Mat. Zametki 75(6), 909-916 (2004) · Zbl 1062.52012 · doi:10.4213/mzm80
[31] Vignéras, M.-F.: Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980) · Zbl 0422.12008
[32] Vinberg, È.: Hyperbolic reflection groups. Russian Math. Surveys 40(1), 31-75 · Zbl 0579.51015
[33] Vinberg, È: Non-arithmetic hyperbolic reflection groups in higher dimensions. In: University Bielefeld Preprint 14047, p. 10 (2014) · Zbl 0365.20055
[34] Vinberg , E., Shvartsman, O.: Discrete groups of motions of spaces of constant curvature. In: Geometry, II, Encyclopaedia Mathematical Sciences, vol. 29, pp. 139-248. Springer, Berlin (1993) · Zbl 0699.22017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.