×

PAM: particle automata in modeling of multiscale biological systems. (English) Zbl 1368.68314


MSC:

68U20 Simulation (MSC2010)
37B15 Dynamical aspects of cellular automata
37N25 Dynamical systems in biology
68Q80 Cellular automata (computational aspects)
92C42 Systems biology, networks
Full Text: DOI

References:

[1] John Adam and Nicola Bellomo. 2012. A Survey of Models for Tumor-Immune System Dynamics. Springer Science and Business Media. · Zbl 0874.92020
[2] Juan A. Aledo, Silvia Martinez, and Jose C. Valverde. 2015a. Graph dynamical systems with general Boolean states. Applied Mathematics and Information Sciences 9, 4, 1803–1808.
[3] Juan A. Aledo, Silvia Martinez, and Jose C. Valverde. 2015b. Parallel dynamical systems over graphs and related topics: A survey. Journal of Applied Mathematics 2015, Article ID 594294. · Zbl 1329.68177 · doi:10.1155/2015/594294
[4] Dustin L. Arendt and Leslie M. Blaha. 2015. Opinions, influence, and zealotry: A computational study on stubbornness. Computational and Mathematical Organization Theory 21, 2, 184–209. · doi:10.1007/s10588-015-9181-1
[5] Emmanuel Barillot, Laurence Calzone, Philippe Hupe, Jean-Philippe Vert, and Andrei Zinovyev. 2012. Computational Systems Biology of Cancer. CRC Press.
[6] Niklas Bark, Zeno Földes-Papp, and Rudolf Rigler. 1999. The incipient stage in thrombin-induced fibrin polymerization detected by FCS at the single molecule level. Biochemical and Biophysical Research Communications 260, 1, 35–41. · doi:10.1006/bbrc.1999.0850
[7] Charles K. Birdsall. 1991. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Transactions on Plasma Science 19, 2, 65–85. · doi:10.1109/27.106800
[8] Arne T. Bittig, Claudia Matschegewski, J. Barbara Nebe, Susanne Stählke, and Adelinde M. Uhrmacher. 2014. Membrane related dynamics and the formation of actin in cells growing on micro-topographies: A spatial computational model. BMC Systems Biology 8, 1, 106.
[9] Marike J. Boenisch and Wilhelm Schäfer. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biology 11, 1, 110.
[10] Krzysztof Boryczko, Witold Dzwinel, and David A. Yuen. 2003. Dynamical clustering of red blood cells in capillary vessels. Journal of Molecular Modeling 9, 1, 16–33. · Zbl 1005.68585 · doi:10.1007/s00894-002-0105-x
[11] Krzysztof Boryczko, Witold Dzwinel, and David A. Yuen. 2004. Modeling fibrin aggregation in blood flow with discrete-particles. Computer Methods and Programs in Biomedicine 75, 3, 181–194. · doi:10.1016/j.cmpb.2004.02.001
[12] Graeme P. Boswell, Helen Jacobs, Fordyce A. Davidson, Geoffrey M. Gadd, and Karl Ritz. 2002. Functional consequences of nutrient translocation in mycelial fungi. Journal of Theoretical Biology 217, 4, 459–477. · Zbl 1334.92253 · doi:10.1006/jtbi.2002.3048
[13] Graeme P. Boswell, Helen Jacobs, Karl Ritz, Geoffrey M. Gadd, and Fordyce A. Davidson. 2007. The development of fungal networks in complex environments. Bulletin of Mathematical Biology 69, 2, 605–634. · Zbl 1139.92316 · doi:10.1007/s11538-005-9056-6
[14] Vittorio Cristini and John Lowengrub. 2010. Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press. · doi:10.1017/CBO9780511781452
[15] T. S. Deisboeck and G. S. Stamatakos (Eds.). 2011. Multiscale Cancer Modeling. Mathematical and Computational Biology Series. Chapman & Hall/CRC Taylor & Francis Group.
[16] Witold Dzwinel. 1997. Virtual particles and search for global minimum. Future Generation Computer Systems 12, 5, 371–389. · doi:10.1016/S0167-739X(96)00024-6
[17] Witold Dzwinel. 2012. Complex automata as a novel conceptual framework for modeling biomedical phenomena. In Advances in Intelligent Modelling and Simulation. Springer, 269–298. · doi:10.1007/978-3-642-28888-3_11
[18] Witold Dzwinel, Krzysztof Boryczko, and David A. Yuen. 2003. A discrete-particle model of blood dynamics in capillary vessels. Journal of Colloid and Interface Science 258, 1, 163–173. · Zbl 1005.68585 · doi:10.1016/S0021-9797(02)00075-9
[19] Witold Dzwinel, Jacek Kitowski, and Jacek Mościński. 1991. “Checker Board” periodic boundary conditions in molecular dynamics codes. Molecular Simulation 7, 3–4, 171–179. · doi:10.1080/08927029108022151
[20] Witold Dzwinel and Krzysztof Magiera. 2015. Irreducible elementary cellular automata found. Journal of Computational Science 11, 300–308. · doi:10.1016/j.jocs.2015.07.001
[21] Witold Dzwinel and Rafał Wcisło. 2015. Very fast interactive visualization of large sets of high-dimensional data. Procedia of Computer Science 51, 572–581. · doi:10.1016/j.procs.2015.05.325
[22] Witold Dzwinel, David A. Yuen, and Krzysztof Boryczko. 2006. Bridging diverse physical scales with the discrete-particle paradigm in modeling colloidal dynamics with mesoscopic features. Chemical Engineering Science 61, 7, 2169–2185. · doi:10.1016/j.ces.2004.01.075
[23] Pep Español. 1998. Fluid particle model. Physical Review E 57, 3, 2930–2948. · Zbl 1432.76311 · doi:10.1103/PhysRevE.57.2930
[24] Stephen Eubank, Hasan Guclu, V. S. Anil Kumar, Madhav V. Marathe, Aravind Srinivasan, Zoltan Toroczkai, and Nan Wang. 2004. Modelling disease outbreaks in realistic urban social networks. Nature 429, 6988, 180–184. · doi:10.1038/nature02541
[25] Y. C. Fung. 1993. Biomechanics. Springer-Verlag, New York, NY. · doi:10.1007/978-1-4757-2257-4
[26] Jaideva C. Goswami and Andrew K. Chan. 2011. Fundamentals of Wavelets: Theory, Algorithms, and Applications. Vol. 233. John Wiley & Sons. · Zbl 1214.65071 · doi:10.1002/9780470926994
[27] L. Grinberg, V. Morozov, D. Fedosov, J. A. Insley, M. E. Papka, K. Kumaran, and G. E. Karniadakis. 2011. A new computational paradigm in multiscale simulations: Application to brain blood flow. In Proceedings of the 2011 International Conference on High Performance Computing, Networking, Storage, and Analysis (SC’11). 1–12. · doi:10.1145/2063384.2063390
[28] Robert D. Groot and Patrick B. Warren. 1997. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics 107, 11, 4423.
[29] Robert D. Guy, Aaron L. Fogelson, and James P. Keener. 2007. Fibrin gel formation in a shear flow. Mathematical Medicine and Biology 24, 1, 111–130. · Zbl 1115.92017 · doi:10.1093/imammb/dql022
[30] P. M. Haile. 1992. Molecular Dynamics Simulation. John Wiley & Sons.
[31] R. W. Hockney and J. W. Eastwood. 2010. Computer Simulation Using Particles. CRC Press. · Zbl 0662.76002
[32] P. J. Hoogerbrugge and J. M. V. A. Koelman. 1992. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19, 3, 155.
[33] Navot Israeli and Nigel Goldenfeld. 2006. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. Physical Review E 73, 2, 026203.
[34] J. Jesty and Y. Nemerson. 1995. The pathways of blood coagulation. Williams Hematology 5, 1227–1238.
[35] Michael Klann, Loïc Paulevé, Tatjana Petrov, and Heinz Koeppl. 2013. Coarse-grained Brownian dynamics simulation of rule-based models. In Computational Methods in Systems Biology. Springer, 64–77. · doi:10.1007/978-3-642-40708-6_6
[36] C. J. Kuhlman, V. S. A. Kumar, M. V. Marathe, H. S. Mortveit, S. Swarup, G. Tuli, S. S. Ravi, and D. J. Rosenkrantz. 2011. A general-purpose graph dynamical system modeling framework. In Proceedings of the 2011 Winter Simulation Conference (WSC’11). 296–308. · doi:10.1109/WSC.2011.6147758
[37] Zhen Li, Xin Bian, Bruce Caswell, and George Em Karniadakis. 2014. Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter 10, 43, 8659–8672. · doi:10.1039/C4SM01387E
[38] Jiamou Liu and Ziheng Wei. 2014. Community detection based on graph dynamical systems with asynchronous runs. In Proceedings of the 2014 2nd International Symposium on Computing and Networking (CANDAR’14). IEEE, Los Alamitos, CA, 463–469. · doi:10.1109/CANDAR.2014.20
[39] Krzysztof Magiera and Witold Dzwinel. 2014. A novel algorithm for coarse-graining of cellular automata. Lecture Notes in Computer Science. LNCS 8751, 258–267. · doi:10.1007/978-3-319-11520-7_27
[40] Carsten Marr and Marc-Thorsten Hütt. 2012. Cellular automata on graphs: Topological properties of ER graphs evolved towards low-entropy dynamics. Entropy 14, 6, 993–1010. · Zbl 1310.37006 · doi:10.3390/e14060993
[41] Audrius Meškauskas, Mark D. Fricker, and David Moore. 2004. Simulating colonial growth of fungi with the neighbour-sensing model of hyphal growth. Mycological Research 108, 11, 1241–1256. · doi:10.1017/S0953756204001261
[42] S. Shea Miller, Denise M. P. Chabot, Thérèse Ouellet, Linda J. Harris, and George Fedak. 2004. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (triticum aestivum). Canadian Journal of Plant Pathology 26, 4, 453–463. · doi:10.1080/07060660409507165
[43] Claudio Pastorino and A. Gama Goicochea. 2015. Dissipative particle dynamics: A method to simulate soft matter systems in equilibrium and under flow. In Selected Topics of Computational and Experimental Fluid Mechanics. Springer, 51–79.
[44] Daniel J. Rosenkrantz, Madhav V. Marathe, Harry B. Hunt III, S. S. Ravi, and Richard E. Stearns. 2015. Analysis problems for graphical dynamical systems: A unified approach through graph predicates. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. 1501–1509.
[45] Mar Serrano and Pep Espanol. 2001. Thermodynamically consistent mesoscopic fluid particle model. Physical Review E 64, 4, 046115.
[46] Caitlin Smith. 2013. Cancer biology: Cancer shows strength through diversity. Nature 499, 7459, 505–508. · doi:10.1038/499505a
[47] Joao S. Soares, Chao Gao, Yared Alemu, Marvin Slepian, and Danny Bluestein. 2013. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Annals of Biomedical Engineering 41, 11, 2318–2333. · doi:10.1007/s10439-013-0829-z
[48] Herbert Spohn. 2012. Large Scale Dynamics of Interacting Particles. Springer Science & Business Media. · Zbl 0742.76002
[49] F. Storti, T. H. S. van Kempen, and F. N. van de Vosse. 2014. A continuum model for platelet plug formation and growth. International Journal for Numerical Methods in Biomedical Engineering 30, 6, 634–658. · doi:10.1002/cnm.2623
[50] Steven H. Strogatz. 2001. Exploring complex networks. Nature 410, 6825, 268–276. · Zbl 1370.90052 · doi:10.1038/35065725
[51] Steven H. Strogatz. 2014. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press. · Zbl 1297.00004
[52] Y. H. Tang and G. E. Karniadakis. 2013. Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, Numerics, and Applications. Computer Physics Communications 185, 11, 2809–2822. · doi:10.1016/j.cpc.2014.06.015
[53] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of small-world networks. Nature 393, 6684, 440–442. · Zbl 1368.05139 · doi:10.1038/30918
[54] Rafał Wcisło, Witold Dzwinel, Paweł Gosztyla, David A. Yuen, and Wojciech Czech. 2013. Interactive visualization tool for planning cancer treatment. In GPU Solutions to Multi-Scale Problems in Science and Engineering. Springer, 607–637. · doi:10.1007/978-3-642-16405-7_38
[55] Rafał Wcisło, Witold Dzwinel, David A. Yuen, and Arkadiusz Z. Dudek. 2009. A 3-D model of tumor progression based on complex automata driven by particle dynamics. Journal of Molecular Modeling 15, 12, 1517–1539. · doi:10.1007/s00894-009-0511-4
[56] Rafał Wcisło, Paweł Gosztyła, and Witold Dzwinel. 2010. N-body parallel model of tumor proliferation. In Proceedings of the 2010 Summer Computer Simulation Conference. 160–167.
[57] J. Weber. 1956. Fluctuation dissipation theorem. Physical Review 101, 6, 1620. · Zbl 0075.22101
[58] E. Weinan. 2011. Principles of Multiscale Modeling. Cambridge University Press. · Zbl 1238.00010
[59] Marcin Worecki and Rafał Wcisło. 2012. GPU enhanced simulation of angiogenesis. Computer Science 13, 1, 35–48. · doi:10.7494/csci.2012.13.1.35
[60] S. Yaghoubi, E. Shirani, A. R. Pishevar, and Y. Afshar. 2015. New modified weight function for the dissipative force in the DPD method to increase the Schmidt number. Europhysics Letters 110, 2, 24002.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.