×

The development of fungal networks in complex environments. (English) Zbl 1139.92316

Summary: Fungi are of fundamental importance in terrestrial ecosystems playing important roles in decomposition, nutrient cycling, plant symbiosis and pathogenesis, and have significant potential in several areas of environmental biotechnology such as biocontrol and bioremediation. In all of these contexts, the fungi are growing in environments exhibiting spatio-temporal nutritional and structural heterogeneities.
In this work, a discrete mathematical model is derived that allows detailed understanding of how events at the hyphal level are influenced by the nature of various environmental heterogeneities. Mycelial growth and function is simulated in a range of environments including homogeneous conditions, nutritionally-heterogeneous conditions and structurally-heterogeneous environments, the latter emulating porous media such as soils. Our results provide further understanding of the crucial processes involved in fungal growth, nutrient translocation and concomitant functional consequences, e.g., acidification, and have implications for the biotechnological application of fungi.

MSC:

92D40 Ecology
92C80 Plant biology
Full Text: DOI

References:

[1] Alexander, M. 1964. Biochemical ecology of soil microorganisms. Ann. Rev. Microbiol. 18, 217–252. · doi:10.1146/annurev.mi.18.100164.001245
[2] Anderson, A.R.A. 2003. A hybrid discrete-continuum technique for individual-based migration models. In Alt, W., Chaplain, M., Griebel, M., Lenz, J. (Eds.), Polymer and Cell Dynamics–Multiscale Modelling and Numerical Simulations. Birkhauser, Switzerland, pp. 251–259.
[3] Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899. · Zbl 0923.92011 · doi:10.1006/bulm.1998.0042
[4] Anderson, A.R.A., Sleeman, B.D., Young, I.M., Griffiths, B.S., 1997. Nematode movement along a chemical gradient in a structurally heterogeneous environment. 2. Theory. Fundam. Appl. Nematol. 20, 165–172.
[5] Bailey, D.J., Otten, W., Gilligan, C.A., 2000. Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds. New Phytol. 146, 535-544. · doi:10.1046/j.1469-8137.2000.00660.x
[6] Barnsley, M., 1988. Fractals Everywhere. Academic Press, London. · Zbl 0691.58001
[7] Bell, A.D., 1986. The simulation of branching patterns in modular organisms. Phil. Trans. R. Soc. London Ser. B. Biol. Sci. 313, 143–160. · doi:10.1098/rstb.1986.0030
[8] Boddy, L., 1999. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia 91, 13–32. · doi:10.2307/3761190
[9] Boswell, G.P., Britton, N.F., Franks, N.R., 1998. Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc. R. Soc. Lond. B 265, 1921–1925.
[10] Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2002. Functional consequences of nutrient translocation in mycelial fungi. J. Theor. Biol. 217, 459–477. · doi:10.1006/jtbi.2002.3048
[11] Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2003a. Growth and function of fungal mycelia in heterogeneous environments. Bull. Math. Biol. 65, 447–477. · Zbl 1334.92253 · doi:10.1016/S0092-8240(03)00003-X
[12] Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2003b. A positive numerical scheme for a mixed-type partial differential equation model for fungal growth. Appl. Math. Comput. 138, 321–340. · Zbl 1027.65125 · doi:10.1016/S0096-3003(02)00121-2
[13] Carroll, G.C., Wicklow, D.T., (Eds.) 1992. The Fungal Community: its Organisation and Role in the Ecosystem. Marcel-Decker, New York.
[14] Cartwright, D.K., Spurr, H.W., 1998. Biological control of Phytophthora parasitica var. nicotianae on tobacco seedling with non-pathogenic binucleate Rhizoctonia fungi. Soil Biol. Biochem. 30, 1879–1884. · doi:10.1016/S0038-0717(98)00019-4
[15] Caswell, H., Etter, R.J., 1993. Ecological interactions in patchy environments: from patch-occupancy models to cellular automata. In: Levin, S.A., Powell, T.M., Steele, J. (Eds.), Patch Dynamics, Volume 96 of Lecture Notes in Biomathematics. Springer, New York, pp. 176–183.
[16] Chen, C., Stotzky, G., 2002. Interactions between microorganisms and soil particles: An overview. In: Huang, P.M., Bollag, J.-M., Senesi, N. (Eds.), Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecology. Wiley, New York, pp. 3–40.
[17] Cohen, D., 1967. Computer simulation of biological pattern generation processes. Nature 216, 246–248. · doi:10.1038/216246a0
[18] Davidson, F.A., 1998. Modelling the qualitative response of fungal mycelia to heterogeneous environments. J. Theor. Biol. 195, 281–292. · doi:10.1006/jtbi.1998.0739
[19] Dix, N.J., Webster, J., 1995. Fungal Ecology. Chapman and Hall, London.
[20] Durrett, R., Levin, S., 1994. Stochastic spatial models: A user’s guide to ecological applications. Phil. Trans. R. Soc. Lond. B 259, 329–350. · doi:10.1098/rstb.1994.0028
[21] Edelstein, L., 1982. The propagation of fungal colonies: A model for tissue growth. J. Theor. Biol. 98, 679–701. · doi:10.1016/0022-5193(82)90146-1
[22] Edelstein, L., Segel, L.A., 1983. Growth and metabolism in mycelial fungi. J. Theor. Biol. 104, 187–210. · doi:10.1016/0022-5193(83)90410-1
[23] Ermentrout, G.B., Edelstein-Keshet, L., 1993. Cellular automata approaches to biological modelling. J. Theor. Biol. 160, 97–133. · doi:10.1006/jtbi.1993.1007
[24] Fisher-Parton, S., Parton, R.M., Hickey, P.C., Dijksterhuis, J., Atkinson, H.A., Read, N.D., 2000. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198, 246–259. · doi:10.1046/j.1365-2818.2000.00708.x
[25] Fomina, M., Ritz, K., Gadd, G.M., 2000. Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193, 207–211. · doi:10.1111/j.1574-6968.2000.tb09425.x
[26] Fomina, M., Ritz, K., Gadd, G.M., 2003. Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol. Res. 107, 861–871. · doi:10.1017/S095375620300786X
[27] Gadd, G.M., 1988. Carbon nutrition and metabolism. In: Berry, D.R. (Ed.), Physiology of Industrial Fungi. Blackwell Scientific, Oxford, UK, pp. 21–57.
[28] Gadd, G.M., 1999. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92. · doi:10.1016/S0065-2911(08)60165-4
[29] Gadd, G.M. (Ed.), 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge, p. 481, ISBN: 0-521-78119-1.
[30] Gadd, G.M., Ramsay, L., Crawford, J.W., Ritz, K., 2001. Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol. Lett. 204, 311–316. · doi:10.1111/j.1574-6968.2001.tb10903.x
[31] Gadd, G.M., Sayer, J., 2000. Fungal transformations of metals and metalloids. In: Lovley, D.R. (Ed.), Environmental Microbe-Metal Interactions. American Society for Microbiology, Washington, pp. 237–256.
[32] Gooday, G.W., 1975. Chemotaxis and chemotrophism in fungi and algae. In: Carlile, M.J. (Ed.), Primitive Sensory and Communication Systems, Academic Press, London, pp. 155-204.
[33] Gooday, G.W., 1995. The dynamics of hyphal growth. Mycol. Res. 99, 385–394. · doi:10.1016/S0953-7562(09)80634-5
[34] Gow, N., Gadd, G.M., (Eds.) 1995. The Growing Fungus. Chapman and Hall, London.
[35] Halley, J.M., Comins, H.N., Lawton, J.H., Hassell, M.P., 1994. Competition, succession and pattern in fungal communities–towards a cellular automata model. Oikos 70, 435–442. · doi:10.2307/3545783
[36] Harris, K., Crabb, D., Young, I.M., Weaver, H., Gilligan, C.A., Otten, W., Ritz, K., 2002. In situ visualisation of fungi in soil thin sections: Problems with crystallisation of the fluorochrome FB 28 (Calcofluor M2R) and improved staining by SCRI Renaissance 2200. Mycol. Res. 106, 293–297.
[37] Harris, K., Young, I.M., Gilligan, C.A., Otten, W., Ritz, K., 2003. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44, 45–56. · doi:10.1111/j.1574-6941.2003.tb01089.x
[38] Hillen, T., Othmer, H.G., 2000. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775. · Zbl 1002.35120 · doi:10.1137/S0036139999358167
[39] Hutchinson, S.A., Sharma, P., Clark, K.R., MacDonald, I., 1980. Control of hyphal orientation in colonies of Mucor hiemalis. Trans. Br. Mycol. Soc. 75, 177–191. · doi:10.1016/S0007-1536(80)80078-7
[40] Jacobs, H., Boswell, G.P., Harper, F.A., Ritz, K., Davidson, F.A., Gadd, G.M., 2002. Solubilization of metal phosphates by Rhizoctonia solani. Mycol. Res. 106, 1468–1479. · doi:10.1017/S0953756202006901
[41] Jacobs, H., Boswell, G.P., Ritz, K., Davidson, F.A., Gadd, G.M., 2002. Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol. Ecol. 40, 65–71. · doi:10.1111/j.1574-6941.2002.tb00937.x
[42] Jacobs, H., Boswell, G.P., Scrimgeour, C.M., Davidson, F.A., Gadd, G.M., Ritz, K., 2004. Translocation of glucose-derived carbon by Rhizoctonia solani in nutritionally heterogeneous environments. Mycol. Res. 108, 453–461. · doi:10.1017/S0953756204009840
[43] Jennings, D.H., Thornton, J.D., Galpin, M.F.J., Coggins, C.R., 1974. Translocation in fungi. Symp. Soc. Exp. Biol. 28, 139–156.
[44] Kotov, V., Reshetnikov, S.V., 1990. A stochastic model for early mycelial growth. Mycol. Res. 94, 577–586. · doi:10.1016/S0953-7562(09)80655-2
[45] LeVeque, R.J., 1992. Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser. · Zbl 0847.65053
[46] :1968a Lindenmayer, A., 1968a. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18, 280–299. · doi:10.1016/0022-5193(68)90079-9
[47] :1968b Lindenmayer, A., 1968b. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18, 300–315. · doi:10.1016/0022-5193(68)90080-5
[48] Littlefield, L.J., Wilcoxson, R.D., Sudia, T.W., 1965. Translocation of phosphorus-32 in Rhizoctonia solani. Phytopathology 55, 536–542.
[49] Lopez-Franco, R., Bartnicki-Garcia, S., Bracker, C.E., 1994. Pulsed growth of fungal hyphal tips. Proc. Natl. Acad. Sci. U.S.A. 91, 12228–12232.
[50] Meěkauskas, A., McNulty, L.J., Moore, D., 2004a. Concerted regulation of all hyphal tips generates fungal fruit body structures: Experiments with computer visualizations produced by a new mathematical model of hyphal growth. Mycol. Res. 108, 341–353. · doi:10.1017/S0953756204009670
[51] Meěkauskas, A., Fricher, M.D., Moore, D., 2004b. Simulating colonial growth of fungi with the neighbour-sensing model of hyphal growth. Mycol. Res. 108, 1241–1256. · doi:10.1017/S0953756204001261
[52] Morley, G.F., Sayer, J.A., Wilkinson, S.C., Gharieb, M.M., Gadd, G.M., 1996. Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland, J.C., Magan, N., Gadd, G.M. (Eds.), Fungi and Environmental Change, Cambridge University Press, Cambridge, pp. 235–256.
[53] Ogoshi, A., 1987. Ecology and pathology of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Ann. Rev. Phytopathol. 25, 125–143. · doi:10.1146/annurev.py.25.090187.001013
[54] Olsson, S., 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as qualified by image analysis. Exp. Mycol. 18, 33–47. · doi:10.1006/emyc.1994.1004
[55] Olsson, S., 1995. Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol. Res. 99, 143–153. · doi:10.1016/S0953-7562(09)80878-2
[56] Olsson, S., 1999. Nutrient translocation and electric signalling in mycelia. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge.
[57] Olsson, S., Gray, S.N., 1998. Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol. Ecol. 26, 109–120. · doi:10.1111/j.1574-6941.1998.tb00497.x
[58] Othmer, H.G., Stevens, A., 1997. Aggregation, blowup, and collapse: The ABC’s of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081. · Zbl 0990.35128 · doi:10.1137/S0036139995288976
[59] Otten, W., Hall, D., Harris, K., Ritz, K., Young, I.M., Gilligan, C.A., 2001. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytol. 151, 459–468. · doi:10.1046/j.0028-646x.2001.00190.x
[60] Paul, E.A., Clark, F.E., 1989. Soil Microbiology and Biochemistry, Academic Press, San Diego.
[61] Persson, C., Olsson, S., Jansson, H.-B., 2000. Growth of Arthrobotrys superba from a birch wood food base into soil determined by radioactive tracing. FEMS Microbiol. Ecol. 31, 47–51. · doi:10.1111/j.1574-6941.2000.tb00670.x
[62] Plank, M.J., Sleeman, B. 2004. Lattice and non-lattice models for tumour angiogenesis. Bull. Math. Biol. 66, 1785–1819. · Zbl 1334.92206 · doi:10.1016/j.bulm.2004.04.001
[63] Rayner, A.D.M., Franks, N.R., 1987. Evolutionary and ecological parallels between ants and fungi. Trends Ecol. Evol. 2, 127–132. · doi:10.1016/0169-5347(87)90053-X
[64] Rayner, A.D.M., Watkins, Z.R., Beeching, J.R., 1999. Self-integration–an emerging concept from the fungal mycelium. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge, pp. 1–24.
[65] Regalado, C.M., Crawford, J.W., Ritz, K., Sleeman, B.D., 1996. The origins of spatial heterogeneity in vegetative mycelia: A reaction-diffusion model. Mycol. Res. 100, 1473-1480. · doi:10.1016/S0953-7562(96)80080-3
[66] Ritz, K., 1995. Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16, 269–280. · doi:10.1111/j.1574-6941.1995.tb00291.x
[67] Ritz, K., Crawford, J.W., 1990. Quantification of the fractal nature of colonies of Trichoderma viride. Mycol. Res. 94, 1138–1141. · doi:10.1016/S0953-7562(09)81346-4
[68] Ritz, K., Crawford, J.W., 1999. Colony development in nutritionally heterogeneous environments. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge, pp. 49–74.
[69] Sampson, K., Lew, R.R., Heath, I.B., 2003. Time series analysis demonstrates the absence of pulsatile hyphal growth. Microbiology 149, 3111–3119. · doi:10.1099/mic.0.26509-0
[70] Sayer, J.A., Gadd, G.M., 1997. Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 101, 653–661. · doi:10.1017/S0953756296003140
[71] Sayer, J.A., Raggett, S.L., Gadd, G.M., 1995. Solubilization of insoluble metal compounds by soil fungi: Development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99, 987–993. · doi:10.1016/S0953-7562(09)80762-4
[72] Schack-Kirchner, H., Wilpert, K.V., Hildebrand, E.E., 2000. The spatial distribution of soil hyphae in structured spruce-forest soils. Plant Soil 224, 195–205. · doi:10.1023/A:1004806122105
[73] Soddell, F., Seviour, R., Soddell, J., 1995. Using Lindenmayer systems to investigate how filamentous fungi may produce round colonies. Complexity International 2. Available online: http://www.csu.edu.au/ci/vol2/f_soddel/f_soddel.html.
[74] Stauffer, D., 1985. Introduction to percolation theory, Taylor & Francis Ltd, London. · Zbl 0990.82530
[75] Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W., 2005. A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337. · Zbl 1222.92018 · doi:10.1016/j.bulm.2004.07.004
[76] Thornton, C.R., Gilligan, C.A., 1999. Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol. Res. 103, 443–448. · doi:10.1017/S0953756298007242
[77] Tisdall, J.M., 1994. Possible role of soil-microorganisms in aggregation in soils. Plant Soil 159, 115–121.
[78] Webster, J., 1980. Introduction to Fungi, (2nd ed.). Cambridge University Press, Cambridge.
[79] Whipps, J.M., 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.
[80] Zheng, X., Wise, S.M., Cristini, V., 2005. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259. · Zbl 1334.92214 · doi:10.1016/j.bulm.2004.08.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.