×

Heavy-lifting of gauge theories by cosmic inflation. (English) Zbl 1391.85005

Summary: Future measurements of primordial non-Gaussianity can reveal cosmologically produced particles with masses of order the inflationary Hubble scale and their interactions with the inflaton, giving us crucial insights into the structure of fundamental physics at extremely high energies. We study gauge-Higgs theories that may be accessible in this regime, carefully imposing the constraints of gauge symmetry and its (partial) Higgsing. We distinguish two types of Higgs mechanisms: (i) a standard one in which the Higgs scale is constant before and after inflation, where the particles observable in non-Gaussianities are far heavier than can be accessed by laboratory experiments, perhaps associated with gauge unification, and (ii) a “heavy-lifting” mechanism in which couplings to curvature can result in Higgs scales of order the Hubble scale during inflation while reducing to far lower scales in the current era, where they may now be accessible to collider and other laboratory experiments. In the heavy-lifting option, renormalization-group running of terrestrial measurements yield predictions for cosmological non-Gaussianities. If the heavy-lifted gauge theory suffers a hierarchy problem, such as does the Standard Model, confirming such predictions would demonstrate a striking violation of the Naturalness Principle. While observing gauge-Higgs sectors in non-Gaussianities will be challenging given the constraints of cosmic variance, we show that it may be possible with reasonable precision given favorable couplings to the inflationary dynamics.

MSC:

85A40 Astrophysical cosmology
83F05 Relativistic cosmology
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] D. Baumann, Inflation, in Physics of the large and the small, proceedings of The Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 09), Boulder, Colorado, U.S.A., 1-26 June 2009, pp. 523-686 (2011) [DOI:10.1142/9789814327183_0010] [arXiv:0907.5424] [INSPIRE]. · Zbl 1241.83003
[2] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
[3] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, Astron. Astrophys.594 (2016) A17 [arXiv:1502.01592] [INSPIRE].
[4] Liguori, M.; Sefusatti, E.; Fergusson, JR; Shellard, EPS, Primordial non-gaussianity and bispectrum measurements in the cosmic microwave background and large-scale structure, Adv. Astron., 2010, 980523, (2010) · doi:10.1155/2010/980523
[5] Bartolo, N.; Matarrese, S.; Riotto, A., Non-gaussianity and the cosmic microwave background anisotropies, Adv. Astron., 2010, 157079, (2010) · doi:10.1155/2010/157079
[6] M. Alvarez et al., Testing Inflation with Large Scale Structure: Connecting Hopes with Reality, arXiv:1412.4671 [INSPIRE].
[7] A. Loeb and M. Zaldarriaga, Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation, Phys. Rev. Lett.92 (2004) 211301 [astro-ph/0312134] [INSPIRE].
[8] J.B. Muñoz, Y. Ali-Ha¨ımoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21-cm fluctuations in the dark ages, Phys. Rev.D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].
[9] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[10] V. Acquaviva, N. Bartolo, S. Matarrese and A. Riotto, Second order cosmological perturbations from inflation, Nucl. Phys.B 667 (2003) 119 [astro-ph/0209156] [INSPIRE]. · Zbl 1038.83046
[11] N. Bartolo, E. Komatsu, S. Matarrese and A. Riotto, Non-Gaussianity from inflation: Theory and observations, Phys. Rept.402 (2004) 103 [astro-ph/0406398] [INSPIRE].
[12] Chen, X., Primordial non-gaussianities from inflation models, Adv. Astron., 2010, 638979, (2010) · doi:10.1155/2010/638979
[13] Salopek, DS; Bond, JR, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev., D 42, 3936, (1990)
[14] E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev.D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].
[15] Chen, X.; Wang, Y., Large non-gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev., D 81, (2010)
[16] Chen, X.; Wang, Y., Quasi-single field inflation and non-gaussianities, JCAP, 04, 027, (2010) · doi:10.1088/1475-7516/2010/04/027
[17] Baumann, D.; Green, D., Signatures of supersymmetry from the early universe, Phys. Rev., D 85, 103520, (2012)
[18] Chen, X.; Wang, Y., Quasi-single field inflation with large mass, JCAP, 09, 021, (2012) · doi:10.1088/1475-7516/2012/09/021
[19] Assassi, V.; Baumann, D.; Green, D., On soft limits of inflationary correlation functions, JCAP, 11, 047, (2012) · doi:10.1088/1475-7516/2012/11/047
[20] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051, (2013) · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[21] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[22] Dimastrogiovanni, E.; Fasiello, M.; Kamionkowski, M., Imprints of massive primordial fields on large-scale structure, JCAP, 02, 017, (2016) · doi:10.1088/1475-7516/2016/02/017
[23] P. Creminelli, On non-Gaussianities in single-field inflation, JCAP10 (2003) 003 [astro-ph/0306122] [INSPIRE].
[24] Lee, H.; Baumann, D.; Pimentel, GL, Non-gaussianity as a particle detector, JHEP, 12, 040, (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[25] Moradinezhad Dizgah, A.; Dvorkin, C., Scale-dependent galaxy bias from massive particles with spin during inflation, JCAP, 01, 010, (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[26] Bezrukov, FL; Shaposhnikov, M., The standard model Higgs boson as the inflaton, Phys. Lett., B 659, 703, (2008) · doi:10.1016/j.physletb.2007.11.072
[27] Chen, X.; Wang, Y.; Xianyu, Z-Z, Standard model background of the cosmological collider, Phys. Rev. Lett., 118, 261302, (2017) · doi:10.1103/PhysRevLett.118.261302
[28] Chen, X.; Wang, Y.; Xianyu, Z-Z, Standard model mass spectrum in inflationary universe, JHEP, 04, 058, (2017) · Zbl 1378.85005 · doi:10.1007/JHEP04(2017)058
[29] N. Weiner, Unification without unification, hep-ph/0106097 [INSPIRE].
[30] C. Csáki, G.D. Kribs and J. Terning, 4-D models of Scherk-Schwarz GUT breaking via deconstruction, Phys. Rev.D 65 (2002) 015004 [hep-ph/0107266] [INSPIRE].
[31] Espinosa, JR; Giudice, GF; Riotto, A., Cosmological implications of the Higgs mass measurement, JCAP, 05, 002, (2008) · doi:10.1088/1475-7516/2008/05/002
[32] Herranen, M.; Markkanen, T.; Nurmi, S.; Rajantie, A., Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett., 113, 211102, (2014) · doi:10.1103/PhysRevLett.113.211102
[33] Buttazzo, D.; etal., Investigating the near-criticality of the Higgs boson, JHEP, 12, 089, (2013) · doi:10.1007/JHEP12(2013)089
[34] Fairbairn, M.; Hogan, R., Electroweak vacuum stability in light of BICEP2, Phys. Rev. Lett., 112, 201801, (2014) · doi:10.1103/PhysRevLett.112.201801
[35] Kobakhidze, A.; Spencer-Smith, A., Electroweak vacuum (in)stability in an inflationary universe, Phys. Lett., B 722, 130, (2013) · Zbl 1311.81241 · doi:10.1016/j.physletb.2013.04.013
[36] Kearney, J.; Yoo, H.; Zurek, KM, Is a Higgs vacuum instability fatal for high-scale inflation?, Phys. Rev., D 91, 123537, (2015)
[37] Espinosa, JR; etal., The cosmological higgstory of the vacuum instability, JHEP, 09, 174, (2015) · Zbl 1388.83910 · doi:10.1007/JHEP09(2015)174
[38] C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys.B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].
[39] Gonderinger, M.; Li, Y.; Patel, H.; Ramsey-Musolf, MJ, Vacuum stability, perturbativity and scalar singlet dark matter, JHEP, 01, 053, (2010) · Zbl 1269.83069 · doi:10.1007/JHEP01(2010)053
[40] Cheung, C.; Papucci, M.; Zurek, KM, Higgs and dark matter hints of an oasis in the desert, JHEP, 07, 105, (2012) · doi:10.1007/JHEP07(2012)105
[41] Kadastik, M.; Kannike, K.; Racioppi, A.; Raidal, M., Implications of the 125 gev Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP, 05, 061, (2012) · doi:10.1007/JHEP05(2012)061
[42] Weinberg, S., Anthropic bound on the cosmological constant, Phys. Rev. Lett., 59, 2607, (1987) · doi:10.1103/PhysRevLett.59.2607
[43] V. Agrawal, S.M. Barr, J.F. Donoghue and D. Seckel, The Anthropic principle and the mass scale of the standard model, Phys. Rev.D 57 (1998) 5480 [hep-ph/9707380] [INSPIRE].
[44] Craig, N.; Green, D., Testing split supersymmetry with inflation, JHEP, 07, 102, (2014) · doi:10.1007/JHEP07(2014)102
[45] Cheung, C.; Creminelli, P.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., The effective field theory of inflation, JHEP, 03, 014, (2008) · doi:10.1088/1126-6708/2008/03/014
[46] Weinberg, S., Quantum contributions to cosmological correlations, Phys. Rev., D 72, (2005)
[47] S. Weinberg, Cosmology, Oxford University Press (2008). · Zbl 1147.83002
[48] Weinberg, S., Effective field theory for inflation, Phys. Rev., D 77, 123541, (2008)
[49] D. Wands, K.A. Malik, D.H. Lyth and A.R. Liddle, A New approach to the evolution of cosmological perturbations on large scales, Phys. Rev.D 62 (2000) 043527 [astro-ph/0003278] [INSPIRE].
[50] S. Weinberg, Adiabatic modes in cosmology, Phys. Rev.D 67 (2003) 123504 [astro-ph/0302326] [INSPIRE].
[51] Senatore, L.; Zaldarriaga, M., The constancy of ζ in single-clock inflation at all loops, JHEP, 09, 148, (2013) · doi:10.1007/JHEP09(2013)148
[52] Assassi, V.; Baumann, D.; Green, D., Symmetries and loops in inflation, JHEP, 02, 151, (2013) · Zbl 1342.83224 · doi:10.1007/JHEP02(2013)151
[53] P. Creminelli and M. Zaldarriaga, Single field consistency relation for the 3-point function, JCAP10 (2004) 006 [astro-ph/0407059] [INSPIRE].
[54] Creminelli, P.; D’Amico, G.; Musso, M.; Norena, J., The (not so) squeezed limit of the primordial 3-point function, JCAP, 11, 038, (2011) · doi:10.1088/1475-7516/2011/11/038
[55] Byrnes, CT; Choi, K-Y, Review of local non-gaussianity from multi-field inflation, Adv. Astron., 2010, 724525, (2010) · doi:10.1155/2010/724525
[56] Burgess, CP; Leblond, L.; Holman, R.; Shandera, S., Super-hubble de Sitter fluctuations and the dynamical RG, JCAP, 03, 033, (2010) · doi:10.1088/1475-7516/2010/03/033
[57] Chen, X.; Wang, Y.; Xianyu, Z-Z, Loop corrections to standard model fields in inflation, JHEP, 08, 051, (2016) · Zbl 1390.83439 · doi:10.1007/JHEP08(2016)051
[58] R.M. Wald, General relativity, Chicago University Press (1984). · Zbl 0549.53001
[59] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark and M. Zaldarriaga, Limits on non-Gaussianities from wmap data, JCAP05 (2006) 004 [astro-ph/0509029] [INSPIRE].
[60] D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP08 (2004) 009 [astro-ph/0405356] [INSPIRE].
[61] Chen, X.; Wang, Y.; Xianyu, Z-Z, Schwinger-Keldysh diagrammatics for primordial perturbations, JCAP, 12, 006, (2017) · Zbl 1515.83321 · doi:10.1088/1475-7516/2017/12/006
[62] Meerburg, PD; Münchmeyer, M.; Muñoz, JB; Chen, X., Prospects for cosmological collider physics, JCAP, 03, 050, (2017) · doi:10.1088/1475-7516/2017/03/050
[63] Alishahiha, M.; Silverstein, E.; Tong, D., DBI in the sky, Phys. Rev., D 70, 123505, (2004)
[64] Chen, X.; Huang, M-x; Kachru, S.; Shiu, G., Observational signatures and non-gaussianities of general single field inflation, JCAP, 01, 002, (2007) · doi:10.1088/1475-7516/2007/01/002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.