×

Vacuum stability, perturbativity, and scalar singlet dark matter. (English) Zbl 1269.83069

Summary: We analyze the one-loop vacuum stability and perturbativity bounds on a singlet extension of the Standard Model (SM) scalar sector containing a scalar dark matter candidate. We show that the presence of the singlet-doublet quartic interaction relaxes the vacuum stability lower bound on the SM Higgs mass as a function of the cutoff and lowers the corresponding upper bound based on perturbativity considerations. We also find that vacuum stability requirements may place a lower bound on the singlet dark matter mass for given singlet quartic self coupling, leading to restrictions on the parameter space consistent with the observed relic density. We argue that discovery of a light singlet scalar dark matter particle could provide indirect information on the singlet quartic self-coupling.

MSC:

83F05 Relativistic cosmology
81V22 Unified quantum theories
81T17 Renormalization group methods applied to problems in quantum field theory

Software:

HDECAY

References:

[1] V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev.D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].
[2] M.C. Bento, O. Bertolami and R. Rosenfeld, Cosmological constraints on an invisibly decaying Higgs boson, Phys. Lett.B 518 (2001) 276 [hep-ph/0103340] [SPIRES].
[3] V. Silveira and A. Zee, Scalar phantoms, Phys. Lett.B 161 (1985) 136 [SPIRES].
[4] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev.D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].
[5] C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys.B 619 (2001) 709 [hep-ph/0011335] [SPIRES]. · doi:10.1016/S0550-3213(01)00513-2
[6] X.-G. He, T. Li, X.-Q. Li, J. Tandean and H.-C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev.D 79 (2009) 023521 [arXiv:0811.0658] [SPIRES].
[7] J. McDonald, Thermally generated gauge singlet scalars as self-interacting dark matter, Phys. Rev. Lett.88 (2002) 091304 [hep-ph/0106249] [SPIRES]. · doi:10.1103/PhysRevLett.88.091304
[8] M.C. Bento, O. Bertolami, R. Rosenfeld and L. Teodoro, Self-interacting dark matter and invisibly decaying Higgs, Phys. Rev.D 62 (2000) 041302 [astro-ph/0003350] [SPIRES].
[9] V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev.D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].
[10] D. O’Connell, M.J. Ramsey-Musolf and M.B. Wise, Minimal extension of the standard model scalar sector, Phys. Rev.D 75 (2007) 037701 [hep-ph/0611014] [SPIRES].
[11] S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP08 (2007) 010 [arXiv:0705.2425] [SPIRES]. · doi:10.1088/1126-6708/2007/08/010
[12] J.R. Espinosa and M. Quirós, The electroweak phase transition with a singlet, Phys. Lett.B 305 (1993) 98 [hep-ph/9301285] [SPIRES].
[13] G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev.D 45 (1992) 2685 [SPIRES].
[14] O.J.P. Eboli and D. Zeppenfeld, Observing an invisible Higgs boson, Phys. Lett.B 495 (2000) 147 [hep-ph/0009158] [SPIRES].
[15] V. Barger, P. Langacker and G. Shaughnessy, Collider signatures of singlet extended Higgs sectors, Phys. Rev.D 75 (2007) 055013 [hep-ph/0611239] [SPIRES].
[16] H. Davoudiasl, T. Han and H.E. Logan, Discovering an invisibly decaying Higgs at hadron colliders, Phys. Rev.D 71 (2005) 115007 [hep-ph/0412269] [SPIRES].
[17] CDMS-II collaboration, P.L. Brink et al., Beyond the CDMS-II dark matter search: superCDMS, astro-ph/0503583 [SPIRES].
[18] S.M. Carroll, S. Mantry and M.J. Ramsey-Musolf, Implications of a scalar dark force for terrestrial experiments, arXiv:0902.4461 [SPIRES].
[19] J. McDonald, N. Sahu and U. Sarkar, Seesaw at collider, lepton asymmetry and singlet scalar dark matter, JCAP04 (2008) 037 [arXiv:0711.4820] [SPIRES].
[20] D.N. Spergel and P.J. Steinhardt, Observational evidence for self-interacting cold dark matter, Phys. Rev. Lett.84 (2000) 3760 [astro-ph/9909386] [SPIRES]. · doi:10.1103/PhysRevLett.84.3760
[21] T. Hambye and K. Riesselmann, Matching conditions and Higgs mass upper bounds revisited, Phys. Rev.D 55 (1997) 7255 [hep-ph/9610272] [SPIRES].
[22] J.A. Casas, J.R. Espinosa and M. Quirós, Standard model stability bounds for new physics within LHC reach, Phys. Lett.B 382 (1996) 374 [hep-ph/9603227] [SPIRES].
[23] T.E. Clark, B. Liu, S.T. Love and T. ter Veldhuis, The standard model Higgs boson-inflaton and dark matter, Phys. Rev.D 80 (2009) 075019 [arXiv:0906.5595] [SPIRES].
[24] R.N. Lerner and J. McDonald, Gauge singlet scalar as inflaton and thermal relic dark matter, Phys. Rev.D 80 (2009) 123507 [arXiv:0909.0520] [SPIRES].
[25] C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys.B 395 (1993) 17 [hep-lat/9210033] [SPIRES]. · doi:10.1016/0550-3213(93)90206-5
[26] M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept.179 (1989) 273 [SPIRES]. · doi:10.1016/0370-1573(89)90061-6
[27] M. Lindner, Implications of triviality for the standard model, Zeit. Phys.C 31 (1986) 295 [SPIRES].
[28] M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett.B 228 (1989) 139 [SPIRES].
[29] M. Sher, Precise vacuum stability bound in the standard model, Phys. Lett.B 317 (1993) 159 [hep-ph/9307342] [SPIRES].
[30] J.A. Casas, J.R. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys.B 436 (1995) 3 [hep-ph/9407389] [SPIRES]. · doi:10.1016/0550-3213(94)00508-C
[31] J.A. Casas, J.R. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett.B 342 (1995) 171 [hep-ph/9409458] [SPIRES].
[32] J. Ellis, J.R. Espinosa, G.F. Giudice, A. Hoecker and A. Riotto, The probable fate of the standard model, Phys. Lett.B 679 (2009) 369 [arXiv:0906.0954] [SPIRES].
[33] G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys.B 609 (2001) 387 [hep-ph/0104016] [SPIRES]. · Zbl 0971.81580 · doi:10.1016/S0550-3213(01)00302-9
[34] K. Riesselmann and S. Willenbrock, Ruling out a strongly-interacting standard Higgs model, Phys. Rev.D 55 (1997) 311 [hep-ph/9608280] [SPIRES].
[35] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [SPIRES]. · Zbl 0938.81515 · doi:10.1016/S0010-4655(97)00123-9
[36] Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett.B 667 (2008) 1 [SPIRES].
[37] R. Gaitskell, V. Mandic and J. Filippini, http://dmtools.berkeley.edu/limitplots.
[38] XENON collaboration, J. Angle et al., First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory, Phys. Rev. Lett.100 (2008) 021303 [arXiv:0706.0039] [SPIRES]. · doi:10.1103/PhysRevLett.100.021303
[39] CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett.102 (2009) 011301 [arXiv:0802.3530] [SPIRES]. · doi:10.1103/PhysRevLett.102.011301
[40] P. Fileviez Perez, H.H. Patel, M.J. Ramsey-Musolf and K. Wang, Triplet scalars and dark matter at the LHC, Phys. Rev.D 79 (2009) 055024 [arXiv:0811.3957] [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.