×

Light particles with spin in inflation. (English) Zbl 1536.83146

Summary: The existence of light particles with spin during inflation is prohibited by the Higuchi bound. This conclusion can be evaded if one considers states with a sizeable coupling with the inflaton foliation, since this breaks the de Sitter isometries. The action for these states can be constructed within the Effective Field Theory of Inflation, or using a CCWZ procedure. Light particles with spin have prescribed couplings with soft inflaton perturbations, which are encoded in consistency relations. We study the phenomenology of light states with spin 2. These mix with the graviton changing the tensor power spectrum and can lead to sizeable tensor non-Gaussianities. They also give rise to a scalar bispectrum and trispectrum with a characteristic angle-dependent non-Gaussianity.

MSC:

83F05 Relativistic cosmology

References:

[1] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[2] P. Creminelli and M. Zaldarriaga, 2004 Single field consistency relation for the 3-point function J. Cosmol. Astropart. Phys.2004 10 006 [astro-ph/0407059]
[3] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, [1503.08043]
[4] H. Lee, D. Baumann and G.L. Pimentel, 2016 Non-Gaussianity as a Particle Detector J. High Energy Phys. JHEP12(2016)040 [1607.03735] · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[5] L.V. Delacrétaz, V. Gorbenko and L. Senatore, 2017 The Supersymmetric Effective Field Theory of Inflation J. High Energy Phys. JHEP03(2017)063 [1610.04227] · Zbl 1377.83152 · doi:10.1007/JHEP03(2017)063
[6] A. Higuchi, 1987 Forbidden Mass Range for Spin-2 Field Theory in de Sitter Space-time, https://doi.org/10.1016/0550-3213(87)90691-2 Nucl. Phys. B 282 397 · doi:10.1016/0550-3213(87)90691-2
[7] C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, 2008 The Effective Field Theory of Inflation J. High Energy Phys. JHEP03(2008)014 [0709.0293]
[8] L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, 2016 Tensor Squeezed Limits and the Higuchi Bound J. Cosmol. Astropart. Phys.2016 09 041 [1605.08424]
[9] E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, 2016 Imprints of Massive Primordial Fields on Large-Scale Structure J. Cosmol. Astropart. Phys.2016 02 017 [1504.05993]
[10] S. Deser and A. Waldron, 2003 Arbitrary spin representations in de Sitter from dS/CFT with applications to dS supergravity, https://doi.org/10.1016/S0550-3213(03)00348-1 Nucl. Phys. B 662 379 [hep-th/0301068] · Zbl 1040.81068 · doi:10.1016/S0550-3213(03)00348-1
[11] D. Baumann, G. Goon, H. Lee and G.L. Pimentel, 2018 Partially Massless Fields During Inflation J. High Energy Phys. JHEP04(2018)140 [1712.06624] · Zbl 1390.83435 · doi:10.1007/JHEP04(2018)140
[12] G. Franciolini, A. Kehagias and A. Riotto, 2018 Imprints of Spinning Particles on Primordial Cosmological Perturbations J. Cosmol. Astropart. Phys.2018 02 023 [1712.06626] · Zbl 1527.83131
[13] A. Kehagias and A. Riotto, 2017 On the Inflationary Perturbations of Massive Higher-Spin Fields J. Cosmol. Astropart. Phys.2017 07 046 [1705.05834] · Zbl 1515.83378
[14] A. Maleknejad and M.M. Sheikh-Jabbari, 2013 Gauge-flation: Inflation From Non-Abelian Gauge Fields, https://doi.org/10.1016/j.physletb.2013.05.001 Phys. Lett. B 723 224 [1102.1513] · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[15] P. Adshead, E. Martinec and M. Wyman, 2013 Perturbations in Chromo-Natural Inflation J. High Energy Phys. JHEP09(2013)087 [1305.2930] · Zbl 1342.83510 · doi:10.1007/JHEP09(2013)087
[16] A. Agrawal, T. Fujita and E. Komatsu, 2018 Large tensor non-Gaussianity from axion-gauge field dynamics, https://doi.org/10.1103/PhysRevD.97.103526 Phys. Rev. D 97 103526 [1707.03023] · doi:10.1103/PhysRevD.97.103526
[17] F. Piazza, D. Pirtskhalava, R. Rattazzi and O. Simon, 2017 Gaugid inflation J. Cosmol. Astropart. Phys.2017 11 041 [1706.03402] · Zbl 1515.83431
[18] L. Senatore and M. Zaldarriaga, 2012 The Effective Field Theory of Multifield Inflation J. High Energy Phys. JHEP04(2012)024 [1009.2093] · doi:10.1007/JHEP04(2012)024
[19] S.R. Coleman, J. Wess and B. Zumino, 1969 Structure of phenomenological Lagrangians. 1., https://doi.org/10.1103/PhysRev.177.2239 Phys. Rev.177 2239 · doi:10.1103/PhysRev.177.2239
[20] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, 1969 Structure of phenomenological Lagrangians. 2., https://doi.org/10.1103/PhysRev.177.2247 Phys. Rev.177 2247 · doi:10.1103/PhysRev.177.2247
[21] L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, 2014 (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects J. High Energy Phys. JHEP11(2014)008 [1405.7384] · Zbl 1333.81288 · doi:10.1007/JHEP11(2014)008
[22] P. Creminelli, J. Noreña and M. Simonović, 2012 Conformal consistency relations for single-field inflation J. Cosmol. Astropart. Phys.2012 07 052 [1203.4595]
[23] K. Hinterbichler, L. Hui and J. Khoury, 2012 Conformal Symmetries of Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2012 08 017 [1203.6351]
[24] W.D. Goldberger, L. Hui and A. Nicolis, 2013 One-particle-irreducible consistency relations for cosmological perturbations, https://doi.org/10.1103/PhysRevD.87.103520 Phys. Rev. D 87 103520 [1303.1193] · doi:10.1103/PhysRevD.87.103520
[25] P. Creminelli, J. Gleyzes, J. Noreña and F. Vernizzi, 2014 Resilience of the standard predictions for primordial tensor modes, https://doi.org/10.1103/PhysRevLett.113.231301 Phys. Rev. Lett.113 231301 [1407.8439] · doi:10.1103/PhysRevLett.113.231301
[26] M. Mirbabayi and M. Zaldarriaga, 2015 Double Soft Limits of Cosmological Correlations J. Cosmol. Astropart. Phys.2015 03 025 [1409.6317]
[27] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, https://doi.org/10.1051/0004-6361/201525836 Astron. Astrophys.594 A17 [1502.01592] · doi:10.1051/0004-6361/201525836
[28] M. Shiraishi, E. Komatsu, M. Peloso and N. Barnaby, 2013 Signatures of anisotropic sources in the squeezed-limit bispectrum of the cosmic microwave background J. Cosmol. Astropart. Phys.2013 05 002 [1302.3056]
[29] F. Schmidt, N.E. Chisari and C. Dvorkin, 2015 Imprint of inflation on galaxy shape correlations J. Cosmol. Astropart. Phys.2015 10 032 [1506.02671]
[30] N.E. Chisari, C. Dvorkin, F. Schmidt and D. Spergel, 2016 Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes, https://doi.org/10.1103/PhysRevD.94.123507 Phys. Rev. D 94 123507 [1607.05232] · doi:10.1103/PhysRevD.94.123507
[31] A. Moradinezhad Dizgah and C. Dvorkin, 2018 Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation J. Cosmol. Astropart. Phys.2018 01 010 [1708.06473] · Zbl 1527.85008
[32] A. Moradinezhad Dizgah, H. Lee, J.B. Muñoz and C. Dvorkin, 2018 Galaxy Bispectrum from Massive Spinning Particles J. Cosmol. Astropart. Phys.2018 05 013 [1801.07265]
[33] G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, 2018 Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, https://doi.org/10.1103/PhysRevD.98.043533 Phys. Rev. D 98 043533 [1803.03814] · doi:10.1103/PhysRevD.98.043533
[34] A. Moradinezhad Dizgah, G. Franciolini, A. Kehagias and A. Riotto, 2018 Constraints on long-lived, higher-spin particles from galaxy bispectrum, https://doi.org/10.1103/PhysRevD.98.063520 Phys. Rev. D 98 063520 [1805.10247] · doi:10.1103/PhysRevD.98.063520
[35] S. Endlich, A. Nicolis and J. Wang, 2013 Solid Inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[36] L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, 2017 Solid Consistency J. Cosmol. Astropart. Phys.2017 03 004 [1701.04382] · Zbl 1515.83309
[37] N. Bartolo et al., Probing non-Gaussian Stochastic Gravitational Wave Backgrounds with LISA, [1806.02819]
[38] D. Seery, M.S. Sloth and F. Vernizzi, 2009 Inflationary trispectrum from graviton exchange J. Cosmol. Astropart. Phys.2009 03 018 [0811.3934]
[39] D. Jeong and M. Kamionkowski, 2012 Clustering Fossils from the Early Universe, https://doi.org/10.1103/PhysRevLett.108.251301 Phys. Rev. Lett.108 251301 [1203.0302] · doi:10.1103/PhysRevLett.108.251301
[40] J. Kim and E. Komatsu, 2013 Limits on anisotropic inflation from the Planck data, https://doi.org/10.1103/PhysRevD.88.101301 Phys. Rev. D 88 101301 [1310.1605] · doi:10.1103/PhysRevD.88.101301
[41] Planck collaboration, P.A.R. Ade et al., 2016 Planck 2015 results. XVI. Isotropy and statistics of the CMB, https://doi.org/10.1051/0004-6361/201526681 Astron. Astrophys.594 A16 [1506.07135] · doi:10.1051/0004-6361/201526681
[42] N. Bartolo, A. Kehagias, M. Liguori, A. Riotto, M. Shiraishi and V. Tansella, 2018 Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra, https://doi.org/10.1103/PhysRevD.97.023503 Phys. Rev. D 97 023503 [1709.05695] · doi:10.1103/PhysRevD.97.023503
[43] P. Creminelli, J. Noreña, M. Pena and M. Simonović, 2012 Khronon inflation J. Cosmol. Astropart. Phys.2012 11 032 [1206.1083]
[44] N. Bartolo, D. Cannone, A. Ricciardone and G. Tasinato, 2016 Distinctive signatures of space-time diffeomorphism breaking in EFT of inflation J. Cosmol. Astropart. Phys.2016 03 044 [1511.07414]
[45] A. Ricciardone and G. Tasinato, 2017 Primordial gravitational waves in supersolid inflation, https://doi.org/10.1103/PhysRevD.96.023508 Phys. Rev. D 96 023508 [1611.04516] · doi:10.1103/PhysRevD.96.023508
[46] N. Bartolo, S. Matarrese, M. Peloso and M. Shiraishi, 2015 Parity-violating CMB correlators with non-decaying statistical anisotropy J. Cosmol. Astropart. Phys.2015 07 039 [1505.02193]
[47] L. Senatore and M. Zaldarriaga, 2010 On Loops in Inflation J. High Energy Phys. JHEP12(2010)008 [0912.2734] · Zbl 1294.83099 · doi:10.1007/JHEP12(2010)008
[48] L. Senatore and M. Zaldarriaga, 2013 The constancy of ζ in single-clock Inflation at all loops J. High Energy Phys. JHEP09(2013)148 [1210.6048] · doi:10.1007/JHEP09(2013)148
[49] X. Chen and Y. Wang, 2010 Large non-Gaussianities with Intermediate Shapes from Quasi-Single Field Inflation, https://doi.org/10.1103/PhysRevD.81.063511 Phys. Rev. D 81 063511 [0909.0496] · doi:10.1103/PhysRevD.81.063511
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.