×

Arbitrarily coupled \(p\)-forms in cosmological backgrounds. (English) Zbl 1478.83111

Summary: In this paper we consider a model based on interacting \(p\)-forms and explore some cosmological applications. Restricting to gauge invariant actions, we build a general Lagrangian allowing for arbitrary interactions between the \(p\)-forms (including interactions with a 0-form, scalar field) in a given background in \(D\) dimensions. For simplicity, we restrict the construction to up to first order derivatives of the fields in the Lagrangian. We discuss with detail the four dimensional case and devote some attention to the mechanism of topological mass generation originated by couplings of the form \(B\wedge F\) between a \(p\)-form and a \((3-p)\)-form. As a result, we show the system of the interacting \(p\)-forms (\(p=1,2,3\)) is equivalent to a parity violating, massive, Proca vector field model. Finally, we discuss some cosmological applications. In a first case we study a very minimalistic system composed by a 3-form coupled to a 0-form. The 3-form induces an effective potential which acts as a cosmological constant term suitable to drive the late time accelerated expansion of the universe dominated by dark energy. We study the dynamics of the system and determine its critical points and stability. Additionally, we study a system composed by a scalar field and a 1-form. This case is interesting because the presence of a coupled 1-form can generate non vanishing anisotropic signatures during the late time accelerated expansion. We discuss the evolution of cosmological parameters such as the equation of state in this model.

MSC:

83C56 Dark matter and dark energy
11F33 Congruences for modular and \(p\)-adic modular forms
83F05 Relativistic cosmology
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
83E05 Geometrodynamics and the holographic principle

References:

[1] Guth A H and Pi S-Y 1982 Fluctuations in the new inflationary universe Phys. Rev. Lett.49 1110-3 · doi:10.1103/PhysRevLett.49.1110
[2] Starobinsky A 1982 Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations Phys. Lett. B 117 175-8 · doi:10.1016/0370-2693(82)90541-X
[3] Hawking S 1982 The development of irregularities in a single bubble inflationary universe Phys. Lett. B 115 295-7 · doi:10.1016/0370-2693(82)90373-2
[4] Aghanim N et al and (Planck Collaboration) 2018 Planck 2018 results. VI. Cosmological parameters (arXiv:1807.06209 [astro-ph.CO])
[5] Akrami Y et al and (Planck Collaboration) 2019 Planck 2018 results. IX. Constraints on primordial non-Gaussianity (arXiv:1905.05697 [astro-ph.CO])
[6] Akrami Y et al and (Planck Collaboration) 2018 Planck 2018 results. VII. Isotropy and Statistics of the CMB (arXiv:1906.02552 [astro-ph.CO])
[7] Schwarz D J, Copi C J, Huterer D and Starkman G D 2016 CMB Anomalies after Planck Class. Quantum Grav.33 184001 · doi:10.1088/0264-9381/33/18/184001
[8] Perivolaropoulos L 2014 Large scale cosmological anomalies and inhomogeneous dark energy Galaxies2 22-61 · doi:10.3390/galaxies2010022
[9] Dimastrogiovanni E, Bartolo N, Matarrese S and Riotto A 2010 Non-gaussianity and statistical anisotropy from vector field populated inflationary models Adv. Astron.2010 752670 · doi:10.1155/2010/752670
[10] Soda J 2012 Statistical anisotropy from anisotropic inflation Class. Quantum Grav.29 083001 · Zbl 1241.83006 · doi:10.1088/0264-9381/29/8/083001
[11] Maleknejad A, Sheikh-Jabbari M M and Soda J 2013 Gauge fields and inflation Phys. Rep.528 161-261 · Zbl 1297.83055 · doi:10.1016/j.physrep.2013.03.003
[12] Mulryne D J, Noller J and Nunes N J 2012 Three-form inflation and non-Gaussianity J. Cosmol. Astropart. Phys.JCAP12(2012) 016 · doi:10.1088/1475-7516/2012/12/016
[13] Ohashi J, Soda J and Tsujikawa S 2013 Observational signatures of anisotropic inflationary models J. Cosmol. Astropart. Phys.JCAP12(2013) 009 · doi:10.1088/1475-7516/2013/12/009
[14] Ohashi J, Soda J and Tsujikawa S 2013 Anisotropic non-gaussianity from a two-form field Phys. Rev. D 87 083520 · doi:10.1103/PhysRevD.87.083520
[15] Sravan Kumar K, Mulryne D J, Nunes N J, Marto J and Vargas Moniz P 2016 Non-gaussianity in multiple three-form field inflation Phys. Rev. D 94 103504 · doi:10.1103/PhysRevD.94.103504
[16] Farakos F, Lanza S, Martucci L and Sorokin D 2017 Three-forms in supergravity and flux compactifications Eur. Phys. J. C 77 602 · doi:10.1140/epjc/s10052-017-5185-y
[17] Obata I and Fujita T 2019 Footprint of two-form field: statistical anisotropy in primordial gravitational waves Phys. Rev. D 99 023513 · doi:10.1103/PhysRevD.99.023513
[18] Beltrán Almeida J P, Guarnizo A, Kase R, Tsujikawa S and Valenzuela-Toledo C A 2019 Anisotropic inflation with coupled p -forms J. Cosmol. Astropart. Phys.JCAP03(2019) 025 · Zbl 1541.83116 · doi:10.1088/1475-7516/2019/03/025
[19] Arkani-Hamed N and Maldacena J 2015 Cosmological collider physics (arXiv:1503.08043 [hep-th])
[20] Kehagias A and Riotto A 2017 On the inflationary perturbations of massive higher-spin fields J. Cosmol. Astropart. Phys.JCAP07(2017) 046 · Zbl 1515.83378 · doi:10.1088/1475-7516/2017/07/046
[21] Bartolo N, Kehagias A, Liguori M, Riotto A, Shiraishi M and Tansella V 2018 Detecting higher spin fields through statistical anisotropy in the CMB and galaxy power spectra Phys. Rev. D 97 023503 · doi:10.1103/PhysRevD.97.023503
[22] Franciolini G, Kehagias A and Riotto A 2018 Imprints of spinning particles on primordial cosmological perturbations J. Cosmol. Astropart. Phys.JCAP02(2018) 023 · Zbl 1527.83131 · doi:10.1088/1475-7516/2018/02/023
[23] Baumann D, Goon G, Lee H and Pimentel G L 2018 Partially massless fields during inflation J. High Energy Phys.JHEP04(2018) 140 · Zbl 1390.83435 · doi:10.1007/JHEP04(2018)140
[24] Franciolini G, Kehagias A, Riotto A and Shiraishi M 2018 Detecting higher spin fields through statistical anisotropy in the CMB bispectrum Phys. Rev. D 98 043533 · doi:10.1103/PhysRevD.98.043533
[25] Bordin L, Creminelli P, Khmelnitsky A and Senatore L 2018 Light particles with spin in inflation J. Cosmol. Astropart. Phys.JCAP10(2018) 013 · Zbl 1536.83146 · doi:10.1088/1475-7516/2018/10/013
[26] Anninos D, De Luca V, Franciolini G, Kehagias A and Riotto A 2019 Cosmological shapes of higher-spin gravity J. Cosmol. Astropart. Phys.JCAP1904(2019) 045 · Zbl 1542.83002 · doi:10.1088/1475-7516/2019/04/045
[27] Cai Y-F, Chen F, Ferreira E G M and Quintin J 2016 New model of axion monodromy inflation and its cosmological implications J. Cosmol. Astropart. Phys.JCAP06(2016) 027 · doi:10.1088/1475-7516/2016/06/027
[28] Cai Y-F, Ferreira E G M, Hu B and Quintin J 2015 Searching for features of a string-inspired inflationary model with cosmological observations Phys. Rev. D 92 121303 · doi:10.1103/PhysRevD.92.121303
[29] Ibanez L E, Montero M, Uranga A and Valenzuela I 2016 Relaxion monodromy and the weak gravity conjecture J. High Energy Phys.JHEP04(2016) 020 · Zbl 1388.83923 · doi:10.1007/JHEP04(2016)020
[30] Valenzuela I 2017 Backreaction issues in axion monodromy and minkowski 4-forms J. High Energy Phys.JHEP06(2017) 098 · Zbl 1380.85022 · doi:10.1007/JHEP06(2017)098
[31] Wald R M 1983 Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant Phys. Rev. D 28 2118-20 · Zbl 0959.83064 · doi:10.1103/PhysRevD.28.2118
[32] Yokoyama S and Soda J 2008 Primordial statistical anisotropy generated at the end of inflation J. Cosmol. Astropart. Phys.JCAP08(2008) 005 · doi:10.1088/1475-7516/2008/08/005
[33] Watanabe M-A, Kanno S and Soda J 2009 Inflationary universe with anisotropic hair Phys. Rev. Lett.102 191302 · doi:10.1103/PhysRevLett.102.191302
[34] Dimopoulos K, Karciauskas M and Wagstaff J M 2010 Vector curvaton without instabilities Phys. Lett. B 683 298-301 · doi:10.1016/j.physletb.2009.12.024
[35] Dimopoulos K, Karciauskas M and Wagstaff J M 2010 Vector curvaton with varying kinetic function Phys. Rev. D 81 023522 · doi:10.1103/PhysRevD.81.023522
[36] Watanabe M-A, Kanno S and Soda J 2011 Imprints of anisotropic inflation on the cosmic microwave background Mon. Not. R. Astron. Soc.412 L83-7 · doi:10.1111/j.1745-3933.2011.01010.x
[37] Bartolo N, Matarrese S, Peloso M and Ricciardone A 2013 Anisotropic power spectrum and bispectrum in the f(ϕ)F2 mechanism Phys. Rev. D 87 023504 · doi:10.1103/PhysRevD.87.023504
[38] Biagetti M, Kehagias A, Morgante E, Perrier H and Riotto A 2013 Symmetries of vector perturbations during the de Sitter epoch J. Cosmol. Astropart. Phys.JCAP07(2013) 030 · doi:10.1088/1475-7516/2013/07/030
[39] Shiraishi M, Komatsu E, Peloso M and Barnaby N 2013 Signatures of anisotropic sources in the squeezed-limit bispectrum of the cosmic microwave background J. Cosmol. Astropart. Phys.JCAP05(2013) 002 · doi:10.1088/1475-7516/2013/05/002
[40] Abolhasani A A, Emami R, Firouzjaee J T and Firouzjahi H 2013 δN formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum J. Cosmol. Astropart. Phys.JCAP08(2013) 016 · doi:10.1088/1475-7516/2013/08/016
[41] Lyth D H and Karciauskas M 2013 The statistically anisotropic curvature perturbation generated by f(ϕ)2F2 J. Cosmol. Astropart. Phys.JCAP05(2013) 011 · doi:10.1088/1475-7516/2013/05/011
[42] Rodriguez Y, Beltrán Almeida J P and Valenzuela-Toledo C A 2013 The different varieties of the Suyama-Yamaguchi consistency relation and its violation as a signal of statistical inhomogeneity J. Cosmol. Astropart. Phys.JCAP04(2013) 039 · doi:10.1088/1475-7516/2013/04/039
[43] Lyth D H 2013 The CMB modulation from inflation J. Cosmol. Astropart. Phys.JCAP08(2013) 007 · doi:10.1088/1475-7516/2013/08/007
[44] Shiraishi M, Komatsu E and Peloso M 2014 Signatures of anisotropic sources in the trispectrum of the cosmic microwave background J. Cosmol. Astropart. Phys.JCAP04(2014) 027 · doi:10.1088/1475-7516/2014/04/027
[45] Chen X, Emami R, Firouzjahi H and Wang Y 2014 The TT, TB, EB and BB correlations in anisotropic inflation J. Cosmol. Astropart. Phys.JCAP08(2014) 027 · doi:10.1088/1475-7516/2014/08/027
[46] Beltrán Almeida J P, Rodriguez Y and Valenzuela-Toledo C A 2014 Scale and shape dependent non-Gaussianity in the presence of inflationary vector fields Phys. Rev. D 90 103511 · doi:10.1103/PhysRevD.90.103511
[47] Fujita T and Obata I 2018 Does anisotropic inflation produce a small statistical anisotropy? J. Cosmol. Astropart. Phys.JCAP01(2018) 049 · Zbl 1527.83132 · doi:10.1088/1475-7516/2018/01/049
[48] Thorsrud M, Mota D F and Hervik S 2012 Cosmology of a scalar field coupled to matter and an isotropy-violating Maxwell field J. High Energy Phys.JHEP10(2012) 066 · Zbl 1397.83217 · doi:10.1007/JHEP10(2012)066
[49] Sorbo L 2011 Parity violation in the cosmic microwave background from a pseudoscalar inflaton J. Cosmol. Astropart. Phys.JCAP06(2011) 003 · doi:10.1088/1475-7516/2011/06/003
[50] Dimopoulos K and Karciauskas M 2012 Parity violating statistical anisotropy J. High Energy Phys.JHEP06(2012) 040 · doi:10.1007/JHEP06(2012)040
[51] Anber M M and Sorbo L 2012 Non-Gaussianities and chiral gravitational waves in natural steep inflation Phys. Rev. D 85 123537 · doi:10.1103/PhysRevD.85.123537
[52] Bartolo N, Matarrese S, Peloso M and Shiraishi M 2015 Parity-violating and anisotropic correlations in pseudoscalar inflation J. Cosmol. Astropart. Phys.JCAP01(2015) 027 · doi:10.1088/1475-7516/2015/01/027
[53] Caprini C and Sorbo L 2014 Adding helicity to inflationary magnetogenesis J. Cosmol. Astropart. Phys.JCAP10(2014) 056 · doi:10.1088/1475-7516/2014/10/056
[54] Bartolo N, Matarrese S, Peloso M and Shiraishi M 2015 Parity-violating CMB correlators with non-decaying statistical anisotropy J. Cosmol. Astropart. Phys.JCAP07(2015) 039 · doi:10.1088/1475-7516/2015/07/039
[55] Namba R, Peloso M, Shiraishi M, Sorbo L and Unal C 2016 Scale-dependent gravitational waves from a rolling axion J. Cosmol. Astropart. Phys.JCAP01(2016) 041 · doi:10.1088/1475-7516/2016/01/041
[56] Shiraishi M, Hikage C, Namba R, Namikawa T and Hazumi M 2016 Testing statistics of the CMB B-mode polarization toward unambiguously establishing quantum fluctuation of the vacuum Phys. Rev. D 94 043506 · doi:10.1103/PhysRevD.94.043506
[57] Caprini C, Guzzetti M C and Sorbo L 2018 Inflationary magnetogenesis with added helicity: constraints from non-Gaussianities Class. Quantum Grav.35 124003 · Zbl 1391.85003 · doi:10.1088/1361-6382/aac143
[58] Almeida J P B, Motoa-Manzano J and Valenzuela-Toledo C A 2017 de Sitter symmetries and inflationary correlators in parity violating scalar-vector models J. Cosmol. Astropart. Phys.JCAP11(2017) 015 · Zbl 1515.83277 · doi:10.1088/1475-7516/2017/11/015
[59] Beltrn Almeida J P and Bernal N 2018 Nonminimally coupled pseudoscalar inflaton Phys. Rev. D 98 083519 · doi:10.1103/PhysRevD.98.083519
[60] Almeida J P B, Motoa-Manzano J and Valenzuela-Toledo C A 2019 Correlation functions of sourced gravitational waves in inflationary scalar vector models. A symmetry based approach J. High Energy Phys.JHEP09(2019) 118 · Zbl 1423.83098 · doi:10.1007/JHEP09(2019)118
[61] Ackerman L, Carroll S M and Wise M B 2007 Imprints of a primordial preferred direction on the microwave background Phys. Rev. D 75 083502 · doi:10.1103/PhysRevD.75.083502
[62] Ackerman L, Carroll S M and Wise M B 2009 Phys. Rev. D 80 069901 (erratum) · doi:10.1103/PhysRevD.80.069901
[63] Flauger R, McAllister L, Pajer E, Westphal A and Xu G 2010 Oscillations in the CMB from axion monodromy inflation J. Cosmol. Astropart. Phys.JCAP06(2010) 009 · doi:10.1088/1475-7516/2010/06/009
[64] Flauger R, McAllister L, Silverstein E and Westphal A 2017 Drifting oscillations in axion monodromy J. Cosmol. Astropart. Phys.JCAP10(2017) 055 · Zbl 1515.83347 · doi:10.1088/1475-7516/2017/10/055
[65] Schmidt F, Chisari N E and Dvorkin C 2015 Imprint of inflation on galaxy shape correlations J. Cosmol. Astropart. Phys.JCAP10(2015) 032 · doi:10.1088/1475-7516/2015/10/032
[66] Moradinezhad Dizgah A and Dvorkin C 2018 Scale-dependent galaxy bias from massive particles with spin during inflation J. Cosmol. Astropart. Phys.JCAP01(2018) 010 · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[67] Moradinezhad Dizgah A, Franciolini G, Kehagias A and Riotto A 2018 Constraints on long-lived, higher-spin particles from galaxy bispectrum Phys. Rev. D 98 063520 · doi:10.1103/PhysRevD.98.063520
[68] Moradinezhad Dizgah A, Lee H, Muñoz J B and Dvorkin C 2018 Galaxy bispectrum from massive spinning particles J. Cosmol. Astropart. Phys.JCAP05(2018) 013 · doi:10.1088/1475-7516/2018/05/013
[69] Normann B D, Hervik S, Ricciardone A and Thorsrud M 2018 Bianchi cosmologies with p -form Gauge fields Class. Quantum Grav.35 095004 · Zbl 1391.83025 · doi:10.1088/1361-6382/aab3a7
[70] Brown J D and Teitelboim C 1987 Dynamical neutralization of the cosmological constant Phys. Lett. B 195 177-82 · doi:10.1016/0370-2693(87)91190-7
[71] Brown J D and Teitelboim C 1988 Neutralization of the cosmological constant by membrane creation Nucl. Phys. B 297 787-836 · doi:10.1016/0550-3213(88)90559-7
[72] Duncan M J and Jensen L G 1990 Four forms and the vanishing of the cosmological constant Nucl. Phys. B 336 100-14 · doi:10.1016/0550-3213(90)90344-D
[73] Duff M J 1989 The cosmological constant is possibly zero, but the proof is probably wrong Phys. Lett. B 226 36 · doi:10.1016/0370-2693(89)90284-0
[74] Duff M J 1989 Conf. Proc. C8903131 403
[75] Bousso R and Polchinski J 2000 Quantization of four form fluxes and dynamical neutralization of the cosmological constant J. High Energy Phys.JHEP06(2000) 006 · Zbl 0990.83543 · doi:10.1088/1126-6708/2000/06/006
[76] Dvali G 2005 Three-form gauging of axion symmetries and gravity (arXiv:hep-th/0507215 [hep-th])
[77] Kaloper N and Sorbo L 2009 Where in the string landscape is quintessence Phys. Rev. D 79 043528 · doi:10.1103/PhysRevD.79.043528
[78] Kaloper N and Sorbo L 2009 A natural framework for chaotic inflation Phys. Rev. Lett.102 121301 · doi:10.1103/PhysRevLett.102.121301
[79] Koivisto T S, Mota D F and Pitrou C 2009 Inflation from N-forms and its stability J. High Energy Phys.JHEP09(2009) 092 · doi:10.1088/1126-6708/2009/09/092
[80] Koivisto T S and Nunes N J 2010 Three-form cosmology Phys. Lett. B 685 105-9 · doi:10.1016/j.physletb.2010.01.051
[81] Koivisto T S and Nunes N J 2009 Inflation and dark energy from three-forms Phys. Rev. D 80 103509 · doi:10.1103/PhysRevD.80.103509
[82] Bielleman S, Ibanez L E and Valenzuela I 2015 Minkowski 3-forms, flux string vacua, axion stability and naturalness J. High Energy Phys.JHEP12(2015) 119 · Zbl 1388.83641
[83] Amendola L and Tsujikawa S 2010 Dark Energy: Theory and Observations (Cambridge: Cambridge University Press) · Zbl 1200.85001 · doi:10.1017/CBO9780511750823
[84] Clifton T, Ferreira P G, Padilla A and Skordis C 2012 Modified gravity and cosmology Phys. Rep.513 1-189 · doi:10.1016/j.physrep.2012.01.001
[85] Koivisto T and Mota D F 2008 Vector field models of inflation and dark energy J. Cosmol. Astropart. Phys.JCAP08(2008) 021 · doi:10.1088/1475-7516/2008/08/021
[86] Armendariz-Picon C 2004 Could dark energy be vector-like? J. Cosmol. Astropart. Phys.JCAP07(2004) 007 · doi:10.1088/1475-7516/2004/07/007
[87] Boehmer C G and Harko T 2007 Dark energy as a massive vector field Eur. Phys. J. C 50 423-9 · doi:10.1140/epjc/s10052-007-0210-1
[88] Fairlie D B, Govaerts J and Morozov A 1992 Universal field equations with covariant solutions Nucl. Phys. B 373 214-32 · doi:10.1016/0550-3213(92)90455-K
[89] Fairlie D B and Govaerts J 1992 Euler hierarchies and universal equations J. Math. Phys.33 3543-66 · Zbl 0764.58037 · doi:10.1063/1.529904
[90] Nicolis A, Rattazzi R and Trincherini E 2009 The Galileon as a local modification of gravity Phys. Rev. D 79 064036 · doi:10.1103/PhysRevD.79.064036
[91] Deffayet C, Esposito-Farese G and Vikman A 2009 Covariant Galileon Phys. Rev. D 79 084003 · doi:10.1103/PhysRevD.79.084003
[92] Deffayet C, Deser S and Esposito-Farese G 2009 Generalized Galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors Phys. Rev. D 80 064015 · doi:10.1103/PhysRevD.80.064015
[93] Deffayet C, Deser S and Esposito-Farese G 2010 Arbitrary p -form Galileons Phys. Rev. D 82 061501 · doi:10.1103/PhysRevD.82.061501
[94] Deffayet C, Garcia-Saenz S, Mukohyama S and Sivanesan V 2017 Classifying Galileon p -form theories Phys. Rev. D 96 045014 · doi:10.1103/PhysRevD.96.045014
[95] Ito A and Soda J 2015 Designing anisotropic inflation with form fields Phys. Rev. D 92 123533 · doi:10.1103/PhysRevD.92.123533
[96] Fleury P, Almeida J P B, Pitrou C and Uzan J-P 2014 On the stability and causality of scalar-vector theories J. Cosmol. Astropart. Phys.JCAP11(2014) 043 · doi:10.1088/1475-7516/2014/11/043
[97] Holland J, Kanno S and Zavala I 2018 Anisotropic inflation with derivative couplings Phys. Rev. D 97 103534 · doi:10.1103/PhysRevD.97.103534
[98] Chern S-S and Simons J 1974 Characteristic forms and geometric invariants Ann. Math.99 48-69 · Zbl 0283.53036 · doi:10.2307/1971013
[99] Blau M and Thompson G 1989 A new class of topological field theories and the Ray-Singer torsion Phys. Lett. B 228 64-8 · doi:10.1016/0370-2693(89)90526-1
[100] Horowitz G T 1989 Exactly soluble diffeomorphism invariant theories Commun. Math. Phys.125 417 · Zbl 0684.53075 · doi:10.1007/BF01218410
[101] Blau M and Thompson G 1991 Topological Gauge theories of antisymmetric tensor fields Ann. Phys., NY205 130-72 · Zbl 0739.53060 · doi:10.1016/0003-4916(91)90240-9
[102] Birmingham D, Blau M, Rakowski M and Thompson G 1991 Topological field theory Phys. Rep.209 129-340 · doi:10.1016/0370-1573(91)90117-5
[103] Aydemir U, Grisa L and Sorbo L 2011 Dynamical four-form fields Phys. Rev. D 83 063516 · doi:10.1103/PhysRevD.83.063516
[104] Maleknejad A and Sheikh-Jabbari M M 2013 Gauge-flation: inflation from non-Abelian Gauge fields Phys. Lett. B 723 224-8 · Zbl 1311.70035 · doi:10.1016/j.physletb.2013.05.001
[105] Maleknejad A and Sheikh-Jabbari M M 2011 Non-Abelian Gauge field inflation Phys. Rev. D 84 043515 · doi:10.1103/PhysRevD.84.043515
[106] Adshead P and Wyman M 2012 Chromo-natural inflation: natural inflation on a steep potential with classical non-Abelian Gauge fields Phys. Rev. Lett.108 261302 · doi:10.1103/PhysRevLett.108.261302
[107] Namba R, Dimastrogiovanni E and Peloso M 2013 Gauge-flation confronted with Planck J. Cosmol. Astropart. Phys.JCAP11(2013) 045 · doi:10.1088/1475-7516/2013/11/045
[108] Nieto C M and Rodriguez Y 2016 Massive Gauge-flation Mod. Phys. Lett. A 31 1640005 · Zbl 1344.83061 · doi:10.1142/S0217732316400058
[109] Adshead P, Martinec E, Sfakianakis E I and Wyman M 2016 Higgsed Chromo-Natural Inflation J. High Energy Phys.JHEP12(2016) 137 · doi:10.1007/JHEP12(2016)137
[110] Allys E, Peter P and Rodriguez Y 2016 Generalized SU(2) Proca theory Phys. Rev. D 94 084041 · doi:10.1103/PhysRevD.94.084041
[111] Maleknejad A 2014 Chiral gravity waves and leptogenesis in inflationary models with non-Abelian Gauge fields Phys. Rev. D 90 023542 · doi:10.1103/PhysRevD.90.023542
[112] Maleknejad A 2016 Gravitational leptogenesis in axion inflation with SU(2) gauge field J. Cosmol. Astropart. Phys.JCAP12(2016) 027 · doi:10.1088/1475-7516/2016/12/027
[113] Allen T J, Bowick M J and Lahiri A 1991 Topological mass generation in (3 + 1)-dimensions Mod. Phys. Lett. A 6 559-72 · Zbl 1021.81641 · doi:10.1142/S0217732391000580
[114] Dvali G, Jackiw R and Pi S-Y 2006 Topological mass generation in four dimensions Phys. Rev. Lett.96 081602 · doi:10.1103/PhysRevLett.96.081602
[115] Tasinato G 2014 Cosmic acceleration from Abelian symmetry breaking J. High Energy Phys.JHEP04(2014) 067 · Zbl 1333.83281 · doi:10.1007/JHEP04(2014)067
[116] Heisenberg L 2014 Generalization of the Proca action J. Cosmol. Astropart. Phys.JCAP05(2014) 015 · doi:10.1088/1475-7516/2014/05/015
[117] Allys E, Peter P and Rodriguez Y 2016 Generalized Proca action for an Abelian vector field J. Cosmol. Astropart. Phys.JCAP02(2016) 004 · doi:10.1088/1475-7516/2016/02/004
[118] Beltran Jimenez J and Heisenberg L 2016 Derivative self-interactions for a massive vector field Phys. Lett. B 757 405-11 · Zbl 1360.83046 · doi:10.1016/j.physletb.2016.04.017
[119] Allys E, Beltrán Almeida J P, Peter P and Rodríguez Y 2016 On the 4D generalized Proca action for an Abelian vector field J. Cosmol. Astropart. Phys.JCAP09(2016) 026 · doi:10.1088/1475-7516/2016/09/026
[120] Julia B and Toulouse G 1979 The many defect problem: Gauge like variables for ordered media containing defects J. Phys. Lett.40 396 · doi:10.1051/jphyslet:019790040016039500
[121] Quevedo F and Trugenberger C A 1997 Phases of antisymmetric tensor field theories Nucl. Phys. B 501 143-72 · Zbl 0939.81029 · doi:10.1016/S0550-3213(97)00337-4
[122] Koivisto T S and Nunes N J 2013 Coupled three-form dark energy Phys. Rev. D 88 123512 · doi:10.1103/PhysRevD.88.123512
[123] Beltrn Almeida J P, Guarnizo A, Kase R, Tsujikawa S and Valenzuela-Toledo C A 2019 Anisotropic 2-form dark energy Phys. Lett. B 793 396-404 · Zbl 1421.83142 · doi:10.1016/j.physletb.2019.05.008
[124] Guarnizo A, Almeida J P B and Valenzuela-Toledo C A 2019 p -form quintessence: exploring dark energy of p -forms coupled to a scalar field 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG15)(Rome, Italy, 1-7 July 2018)
[125] Bahamonde S, Böhmer C G, Carloni S, Copeland E J, Fang W and Tamanini N 2018 Dynamical systems applied to cosmology: dark energy and modified gravity Phys. Rep.775-7 1-122 · Zbl 1404.83143 · doi:10.1016/j.physrep.2018.09.001
[126] Wainwright J and Ellis G F R 1997 Dynamical Systems in Cosmology (Cambridge: Cambridge University Press) · Zbl 1072.83002 · doi:10.1017/CBO9780511524660
[127] Bean R, Hansen S H and Melchiorri A 2001 Early universe constraints on a primordial scaling field Phys. Rev. D 64 103508 · doi:10.1103/PhysRevD.64.103508
[128] Ohashi J and Tsujikawa S 2009 Assisted dark energy Phys. Rev. D 80 103513 · doi:10.1103/PhysRevD.80.103513
[129] Ade P A R et al 2016 Planck 2015 results. XIV. Dark energy and modified gravity Astron. Astrophys.594 A14 · doi:10.1051/0004-6361/201525814
[130] Amendola L et al 2013 Cosmology and fundamental physics with the Euclid satellite Living Rev. Relativ.16 6 · doi:10.12942/lrr-2013-6
[131] Riess A G et al 2016 A 2.4 · doi:10.3847/0004-637X/826/1/56
[132] Mörtsell E and Dhawan S 2018 Does the Hubble constant tension call for new physics? J. Cosmol. Astropart. Phys.JCAP09(2018) 025 · doi:10.1088/1475-7516/2018/09/025
[133] Di Valentino E, Linder E V and Melchiorri A 2018 Vacuum phase transition solves the H0 tension Phys. Rev. D 97 043528 · doi:10.1103/PhysRevD.97.043528
[134] Di Valentino E, Melchiorri A and Mena O 2017 Can interacting dark energy solve the H0 tension? Phys. Rev. D 96 043503 · doi:10.1103/PhysRevD.96.043503
[135] Guo R-Y, Zhang J-F and Zhang X 2019 Can the H0 tension be resolved in extensions to ΛCDM cosmology? J. Cosmol. Astropart. Phys.JCAP02(2019) 054 · doi:10.1088/1475-7516/2019/02/054
[136] Pourtsidou A and Tram T 2016 Reconciling CMB and structure growth measurements with dark energy interactions Phys. Rev. D 94 043518 · doi:10.1103/PhysRevD.94.043518
[137] Khosravi N, Baghram S, Afshordi N and Altamirano N 2019 H0 tension as a hint for a transition in gravitational theory Phys. Rev. D 99 103526 · doi:10.1103/PhysRevD.99.103526
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.